Skip to main content
Log in

Elucidation of the Binding Properties of A Photosensitizer to Salmon Sperm DNA and Its Photobleaching Processes by Spectroscopic Methods

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Methylene blue (MB) is a tricyclic heteroaromatic photosensitizer with a promising application in the photodynamic therapy (PDT) for anticancer treatment. The binding properties of MB to salmon sperm DNA have been investigated by the measurements of absorption spectra, quenching experiments and the photobleaching processes. Remarkable hypochromic and bathochromic effects of MB in the presence of increasing amounts of DNA have been observed in the absorption spectra. The quenching of MB by the DNA bases obeys the Stern-Volmer equation and ferrocyanide quenching of MB in the absence and presence of DNA is also measured as extended experiments. Results from the above spectral measurements are all consistent with the intercalative binding mode of MB to DNA with the K b value of 5.6 × 103 M−1. The photobleaching processes of MB and its DNA complex have also been studied, which indicate that the photobleaching of MB and its DNA complex proceed with different mechanisms and the reactive oxygen species are responsible for the self-sensitized photooxidation of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shahabadi N, Moghadam NH (2012) Determining the mode of interaction of calf thymus DNA with the drug sumatriptan using voltammetric and spectroscopic techniques. Spectrochim Acta A 99:18

    Article  CAS  Google Scholar 

  2. Sasikala WD, Mukherjee A (2012) Molecular mechanism of direct proflavine-DNA intercalation: evidence for drug-induced minimum base-stacking penalty pathway. J Phys Chem B 116:12208

    Article  PubMed  CAS  Google Scholar 

  3. Shahabadi N, Heidari L (2012) Binding studies of the antidiabetic drug, metformin to calf thymus DNA using multispectroscopic methods. Spectrochim Acta A 97:406

    Article  CAS  Google Scholar 

  4. Jalali F, Dorraji PS (2012) Electrochemical and spectroscopic studies of the interaction between the neuroleptic drug, gabapentin, and DNA. J Pharm Biomed Anal 70:598

    Article  PubMed  CAS  Google Scholar 

  5. Wilhelm M, Mukherjee A, Bouvier B, Zakrzewska K, Hynes JT, Lavery R (2012) Multistep drug intercalation: molecular dynamics and free energy studies of the binding of daunomycin to DNA. J Am Chem Soc 134:8588

    Article  PubMed  CAS  Google Scholar 

  6. Erkkila KE, Odom DT, Barton JK (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99:2777

    Article  PubMed  CAS  Google Scholar 

  7. Chow CS, Bogdan FM (1997) A structural basis for RNA-ligand interactions. Chem Rev 97:1489

    Article  PubMed  CAS  Google Scholar 

  8. Waring MJ (1977) In: Roberts GCK (ed) Drug action at the molecular level. London, Macmillan

    Google Scholar 

  9. Kruglik SG, Mojzes P, Mizutani Y, Kitagawa T, Turpin P-Y (2001) Time-resolved resonance Raman study of the exciplex formed between excited Cu-porphyrin and DNA. J Phys Chem B 105:5018

    Article  CAS  Google Scholar 

  10. Manivannan C, Renganathan R (2012) Spectroscopic investigation on the interaction of 9-aminoacridine with certain dyes. Spectrochim Acta A 95:685

    Article  CAS  Google Scholar 

  11. Paramaguru G, Solomon RV, Venuvanalingam P, Renganathan R (2011) Spectroscopic studies on TiO2 enhanced binding of Hypocrellin B with DNA. J Fluoresc 21:1887

    Article  PubMed  CAS  Google Scholar 

  12. Karukstis KK, Thompson EHZ, Whiles JA, Rosenfeld RJ (1998) Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys Chem 73:249

    Article  PubMed  CAS  Google Scholar 

  13. Antonov L, Gergov G, Petrov V, Kubista M, Nygren J (1999) UV–vis spectroscopic and chemometric study on the aggregation of ionic dyes in water. Talanta 49:99

    Article  PubMed  CAS  Google Scholar 

  14. Henderson PT, Boone E, Schuster GB (2002) Bulged guanine is uniquely sensitive to damage caused by visible-light irradiation of ethidium bound to DNA: a possible role in mutagenesis. Helv Chim Acta 85:135

    Article  CAS  Google Scholar 

  15. Kawai K, Osakada Y, Fujitsuka M, Majima T (2006) Effects of reaction rate of radical anion of a photosensitizer with molecular oxygen on the photosensitized DNA damage. Chem Commun, 3918

  16. Wang HM, Jiang JQ, Xiao JH, Gao RL, Lin FY, Liu XY (2008) Porphyrin with amino acid moieties: a tumor photosensitizer. Chem Biol Interact 172:154

    Article  PubMed  CAS  Google Scholar 

  17. Wainwright M, Giddens RM (2003) Phenothiazinium photosensitisers: choices in synthesis and application. Dyes Pigments 57:245

    Article  CAS  Google Scholar 

  18. Qin M, Hah HJ, Kim G, Nie G, Lee YE, Kopelman R (2011) Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem Photobiol Sci 10:832

    Article  PubMed  CAS  Google Scholar 

  19. Hah HJ, Kim G, Lee YE, Orringer DA, Sagher O, Philbert MA, Kopelman R (2011) Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol Biosci 11:90

    Article  PubMed  CAS  Google Scholar 

  20. Slameňová D, Kubošková K, Horváthová E, Robichová S (2002) Rosemary-stimulated reduction of DNA strand breaks and FPG-sensitive sites in mammalian cells treated with H2O2 or visible light-excited methylene blue. Cancer Lett 177:145

    Article  PubMed  Google Scholar 

  21. Kumar SS, Ghosh A, Devasagayam TPA, Chauhan PS (2000) Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA. Mutat Res 469:207

    Article  PubMed  CAS  Google Scholar 

  22. Fujimoto BS, Clendenning JB, Delrow JJ, Heath PJ, Schurr M (1994) Fluorescence and photobleaching studies of methylene blue binding to DNA. J Phys Chem 98:6633

    Article  CAS  Google Scholar 

  23. Rohs R, Sklenar H, Lavery R, Röder B (2000) Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J Am Chem Soc 122:2860

    Article  CAS  Google Scholar 

  24. Tuite E, Nordén B (1994) Sequence-specific interactions of methylene blue with polynucleotides and DNA: a spectroscopic study. J Am Chem Soc 116:7548

    Article  CAS  Google Scholar 

  25. OhUigin C, McConnell DJ, Kelley JM, van der Putten WJM (1987) Methylene blue photosensitised strand cleavage of DNA: effects of dye binding and oxygen. Nucl Acid Res 15:7411

    Article  CAS  Google Scholar 

  26. Kelly JM, Lyons MEG, van der Putten WJM (1986) In: Smyth MR, Vos JG (eds) Electrochemistry, Sensors and Analysis, vol 25, Analytical chemistry symposium series. Amsterdam, Elsevier

    Google Scholar 

  27. Zhao G-C, Zhu J-J, Chen H-Y (1999) Spectroscopic studies of the interactive model of methylene blue with DNA by means of β-cyclodextrin. Spectrochim Acta A 55:1109

    Article  Google Scholar 

  28. Zhao G-C, Zhu J-J, Zhang J-J, Chen H-Y (1999) Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin. Anal Chim Acta 394:337

    Article  CAS  Google Scholar 

  29. Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111:8901

    Article  CAS  Google Scholar 

  30. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8541

    Google Scholar 

  31. Bloomfield VA, Crothers DM, Tinoco I Jr (1974) Physical chemistry of nucleic acids. Harper and Row, New York

    Google Scholar 

  32. Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23:271

    Article  CAS  Google Scholar 

  33. Cantor C, Schimmel PR (1980) Biophysical chemistry, Vol. 2. W.H. Freeman, San Francisco

    Google Scholar 

  34. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111:3051

    Article  CAS  Google Scholar 

  35. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392

    Article  PubMed  CAS  Google Scholar 

  36. Wang AH-J, Teng M-K (1990) In: Bugg CE, Ealick SE (eds) Crystallographic and modeling methods in molecular design. New York, Springer

    Google Scholar 

  37. Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71:395

    Article  CAS  Google Scholar 

  38. Wasserman HH, Scheffer JR, Cooper JL (1972) Singlet oxygen reactions with 9,10-diphenylanthracene peroxide. J Am Chem Soc 94:4991

    Article  CAS  Google Scholar 

  39. He Y-Y, An J-Y, Jiang L-J (1999) Electron paramagnetic resonance and spectrophotometric evidence on the photodynamic activity of a new perylenequinonoid pigment. J Photochem Photobiol B 50:166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Tang, GQ. Elucidation of the Binding Properties of A Photosensitizer to Salmon Sperm DNA and Its Photobleaching Processes by Spectroscopic Methods. J Fluoresc 23, 303–310 (2013). https://doi.org/10.1007/s10895-012-1148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1148-8

Keywords

Navigation