Skip to main content
Log in

Immunoassays Based on Surface-Enhanced Fluorescence using Gap-Plasmon-Tunable Ag Bilayer Nanoparticle Films

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel gap-plasmon-tunable Ag bilayer nanoparticle film for immunoassays is demonstrated. Different from a traditional Ag monolayer nanoparticle film, a desired number of polyelectrolyte (PEL) layers are deposited on the nanoparticles before the self-assembly of a second Ag nanoparticle layer. Interestingly, by controlling the number of the PEL interlayers, the gap plasmon between the two Ag nanoparticle layers can be tuned across the visible spectral range. The ability of the presented Ag bilayer nanoparticle films in fluorescence enhancement has been examined experimentally. A maximal enhancement of around 15.4 fold was achieved when 7 layers of polyelectrolyte were used. When this optimal Ag bilayer nanoparticle film was applied to fluorescence immunoassay, a performance with approximately 3.3-fold enhancement was obtained compared with that performed on a traditional glass substrate. The experimental results suggest that the presented gap-plasmon tunable Ag bilayer nanoparticle films have great potential in fluorescence-based immunoassays. The method of the bilayer-film construction presented here also provides new insights into the rational design of the plasmonic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gosling JP (1990) A decade of development in immunoassay methodology. Clin Chem 36(8):1408–1427

    PubMed  CAS  Google Scholar 

  2. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62. doi:10.1016/j.copbio.2005.01.001

    Article  PubMed  CAS  Google Scholar 

  3. Li RQ, Xu SH, Wang CL, Shao HB, Xu QY, Cui YP (2010) Metal-enhanced fluorescence of CdTe nanocrystals in aqueous solution. Chemphyschem 11(12):2582–2588. doi:10.1002/cphc.201000239

    Article  PubMed  CAS  Google Scholar 

  4. Zhang RH, Wang ZY, Song CY, Yang J, Li J, Sadaf A, Cui YP (2011) Surface-enhanced fluorescence from fluorophore-assembled monolayers by using Ag@SiO2 nanoparticles. Chemphyschem 12(5):992–998. doi:10.1002/cphc.201000849

    Article  PubMed  CAS  Google Scholar 

  5. Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2(12):1449–1452. doi:10.1021/nl025819k

    Article  CAS  Google Scholar 

  6. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2003) Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. Anal Biochem 315(1):57–66. doi:10.1016/s0003-2697(02)00702-9

    Article  PubMed  CAS  Google Scholar 

  7. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11). doi:10.1103/PhysRevLett.96.113002

  8. Wang YS, Liu B, Mikhailovsky A, Bazan GC (2010) Conjugated polyelectrolyte-metal nanoparticle platforms for optically amplified DNA detection. Adv Mater 22(5):656–659. doi:10.1002/adma.200902675

    Google Scholar 

  9. Lakowicz JR, Shen YB, D'Auria S, Malicka J, Fang JY, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301(2):261–277. doi:10.1006/abio.2001.5503

    Article  PubMed  CAS  Google Scholar 

  10. Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75(3):1139–1152. doi:10.1063/1.442161

    Article  CAS  Google Scholar 

  11. Ruppin R (1982) Decay of an excited molecule near a small metal sphere. J Chem Phys 76(4):1681–1684. doi:10.1063/1.443196

    Article  CAS  Google Scholar 

  12. Das PC, Puri A (2002) Energy flow and fluorescence near a small metal particle. Phys Rev B 65(15). doi:10.1103/PhysRevB.65.155416

  13. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70(18):3898–3905. doi:10.1021/ac9712310

    Article  PubMed  CAS  Google Scholar 

  14. Hayakawa T, Selvan ST, Nogami M (1999) Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass. Appl Phys Lett 74(11):1513–1515. doi:10.1063/1.123600

    Article  CAS  Google Scholar 

  15. Selvan ST, Hayakawa T, Nogami M (1999) Remarkable influence of silver islands on the enhancement of fluorescence from Eu3+ ion-doped silica gels. J Phys Chem B 103(34):7064–7067. doi:10.1021/jp9902755

    Article  CAS  Google Scholar 

  16. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337(2):171–194. doi:10.1016/j.ab.2004.11.026

    Article  PubMed  CAS  Google Scholar 

  17. Matveeva EG, Gryczynski Z, Lakowicz JR (2005) Myoglobin immunoassay based on metal particle-enhanced fluorescence. J Immunol Methods 302(1–2):26–35. doi:10.1016/j.jim.2005.04.020

    Article  PubMed  CAS  Google Scholar 

  18. Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR (2005) Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. J Phys Chem B 109(16):7969–7975. doi:10.1021/jp0456842

    Article  PubMed  CAS  Google Scholar 

  19. Shtoyko T, Matveeva EG, Chang IF, Gryczynski Z, Goldys E, Gryczynski I (2008) Enhanced fluorescent immunoassays on silver fractal-like structures. Anal Chem 80(6):1962–1966. doi:10.1021/ac7019915

    Article  PubMed  CAS  Google Scholar 

  20. Barnett A, Matveeva EG, Gryczynski I, Gryczynski Z, Goldys EM (2007) Coupled plasmon effects for the enhancement of fluorescent immunoassays. Physica B 394(2):297–300. doi:10.1016/j.physb.2006.12.085

    Article  CAS  Google Scholar 

  21. Nooney R, Clifford A, LeGuevel X, Stranik O, McDonagh C, MacCraith BD (2010) Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence. Anal Bioanal Chem 396(3):1127–1134. doi:10.1007/s00216-009-3357-9

    Article  PubMed  CAS  Google Scholar 

  22. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501. doi:10.1021/nl062901x

    Article  PubMed  CAS  Google Scholar 

  23. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7(3):690–696. doi:10.1021/nl062795z

    Article  PubMed  CAS  Google Scholar 

  24. Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752. doi:10.1021/nn900001q

    Article  PubMed  CAS  Google Scholar 

  25. Ishida A, Kumagai K (2009) Fluorescence enhancement due to gap mode of gold colloids immobilized on a hydrophilic amino-terminated glass substrate. Chem Lett 38(2):144–145. doi:10.1246/cl.2009.144

    Article  CAS  Google Scholar 

  26. Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5(1):5–9. doi:10.1021/nl048965u

    Article  PubMed  CAS  Google Scholar 

  27. Cunningham A, Muhlig S, Rockstuhl C, Burgi T (2011) Coupling of Plasmon Resonances in Tunable Layered Arrays of Gold Nanoparticles. J Phys Chem C 115(18):8955–8960. doi:10.1021/jp2011364

    Article  CAS  Google Scholar 

  28. Lee PC, Meisel D (1982) Adsorption and surface-enhanced raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  29. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903. doi:10.1021/nl049681c

    Article  CAS  Google Scholar 

  30. Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97(1). doi:10.1103/PhysRevLett.97.017402

  31. Viste P, Plain J, Jaffiol R, Vial A, Adam PM, Royer P (2010) Enhancement and quenching regimes in metal–semiconductor hybrid optical nanosources. ACS Nano 4(2):759–764. doi:10.1021/nn901294d

    Article  PubMed  CAS  Google Scholar 

  32. Ming T, Zhao L, Yang Z, Chen HJ, Sun LD, Wang JF, Yan CH (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9(11):3896–3903. doi:10.1021/nl902095q

    Article  PubMed  CAS  Google Scholar 

  33. Aslan K, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382(4):926–933. doi:10.1007/s00216-005-3195-3

    Article  PubMed  CAS  Google Scholar 

  34. Hogendoorn PCW, Vandorst EBL, Vanderburg SH, Bruijn JA, Daha MR, Hoedemaeker PJ, Fleuren GJ (1993) Antigen size influences the type of glomerular pathology in chronic serum sickness. Nephrol Dial Transplant 8(8):703–710

    PubMed  CAS  Google Scholar 

  35. Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998) Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and Fourier transform infrared reflection-absorption spectroscopy. Langmuir 14(16):4559–4565. doi:10.1021/la971288h

    Article  CAS  Google Scholar 

  36. Lv Z, Wang JH, Chen GP, Deng LH (2011) Imaging and determining friction forces of specific interactions between human IgG and rat anti-human IgG. J Biol Phys 37(4):417–427. doi:10.1007/s10867-011-9223-y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China (NSFC) (Nos. 60708024, 60877024), and Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (Nos. 20070286058, 20090092110015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Wang, Z., Song, C. et al. Immunoassays Based on Surface-Enhanced Fluorescence using Gap-Plasmon-Tunable Ag Bilayer Nanoparticle Films. J Fluoresc 23, 71–77 (2013). https://doi.org/10.1007/s10895-012-1117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1117-2

Keywords

Navigation