Skip to main content
Log in

Influence of Catalyses on the Preparation of YVO4:Eu3+ Phosphors by the Sol–gel Methodology

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

YVO4:Eu3+ phosphors have been prepared by the hydrolytic sol–gel methodology, with and without alkaline catalyst. The solid powder was obtained by reaction between yttrium III chloride and vanadium alkoxides; the europium III chloride was used as structural probe. The powder was treated at 100, 400, 600, or 800 °C for 4 h. The samples were characterized by X-ray diffraction, thermal analysis, and photoluminescence. The XRD patterns revealed YVO4 crystalline phase formation for the sample prepared without the catalyst and heat-treated at 600 °C and for the sample prepared in the presence of ammonium as catalyst and heat-treated at 100 °C. The average nanosized crystallites were estimated by the Scherrer equation. The sample which was produced via alkaline catalysis underwent weight loss in two stages, at 100 and 400 °C, whereas the sample obtained without catalyst presented four stages of weight loss, at 150, 250, 400, and 650 °C. The excitation spectra of the samples treated at different temperatures displayed the charge transfer band (CTB) at 320 nm. PL data of all the samples revealed the characteristic transition bands arising from the 5D05FJ (J = 0, 1, 2, 3, and 4) manifolds under maximum excitation at 320, 394, and 466 nm in all cases. The 5D07 F2 transition often dominates the emission spectra, indicating that the Eu3+ ion occupies a site without inversion center. The long lifetime suggests that the matrix can be applied as phosphors. In conclusion, the sol–gel methodology is a very efficient approach for the production of phosphors at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wright JD, Sommerdijk NAJM (2001) Sol–gel materials: chemistry and application. Taylor & Francis, London

    Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  3. Aegerter MA, Menning M (2004) Sol–gel technologies for glass producers and users. Kluwer Academic Publishers, Germany

    Google Scholar 

  4. Hench LL (1998) Sol–gel silica. Noyes Publications

  5. Mark JE, Lee CYC, Bianconi PA (1995) Hybrid organic-inorganic composites. American Chemical Society, Washington DC

    Book  Google Scholar 

  6. Sanchez C, de Soler-Illia GJDAA, Ribot F, Grosso D (2003) Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces, Nanomaterials and their physical properties. CR Chimie 6:1131–1151

    Article  CAS  Google Scholar 

  7. Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596

    Article  CAS  Google Scholar 

  8. Gaponenko NV (2002) Synthesis and optical properties of films formed by the sol-gel method in mesoporous matrices. J Appl Spectrosc 69:1–20

    Article  CAS  Google Scholar 

  9. Carlos LD, Ferreira RAS, Bermudez VZ, Ribeiro SJL (2001) Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions. Adv Funct Mater 11:111–115

    Article  CAS  Google Scholar 

  10. Rocha LA, Caiut JMA, Messaddeq Y, Ribeiro SJL, Martines MAU, Freiria JC, Dexpert-Ghys J, Verelst M (2010) Non-leachable highly luminescent ordered mesoporous SiO2 spherical particles. Nanotechnology 21:1–6

    Google Scholar 

  11. Bandeira LC, Ciuffi KJ, Calefi PS, Nassar EJ (2010) Silica matrix doped with calcium and phosphate by sol-gel. Adv Biosci Biotechnol 1:200–207

    Article  CAS  Google Scholar 

  12. Petil O, Zanotto ED, Hench LL (2001) Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J Non-Cryst Solids 292:115–126

    Article  Google Scholar 

  13. de Campos BM, Bandeira LC, Calefi PS, Ciuffi KJ, Nassar EJ, Silva JVL, Oliveira M, Maia IA (2011) Protective coating materials on nylon substrate by sol-gel. Virtual Phys Prototyp 6(1):33–39

    Article  Google Scholar 

  14. Pereira PFS, Matos MG, Avila LR, Nassor ECO, Cestari A, Ciuffi KJ, Calefi PS, Nassar EJ (2010) Red, green and blue (RGB) emission doped Y3Al5O12 (YAG) phosphors prepared by non-hydrolytic sol–gel route. J Lumin 130:488–493

    Article  CAS  Google Scholar 

  15. Matos MG, Pereira PFS, Calefi PS, Ciuffi KJ, Nassar EJ (2009) Preparation of a GdCaAl3O7 matrix by the non-hydrolytic sol–gel route. J Lumin 129:1120–1124

    Article  CAS  Google Scholar 

  16. Bhaktha BNS, Kinowski C, Bouazaoui M, Capoen B, Robbe-Cristini O, Beclin F, Roussel P, Ferrari M, Turrell S (2009) Controlled Growth of SnO2 Nanocrystals in Eu3+-Doped SiO2−SnO2 Planar Waveguides: A Spectroscopic Investigation. J Phys Chem C 113:21555–21559

    Article  CAS  Google Scholar 

  17. Jedlicka SS, Rickus JL, Zemlyanov D (2010) Controllable surface expression of bioactive peptides incorporated into a silica thin film matrix. J Phys Chem C 114:342–344

    Article  CAS  Google Scholar 

  18. Sanchez C (2010) Advanced nanomaterials: a domain where chemistry, physics and biology meet. CR Chimie 13:1–2

    Article  CAS  Google Scholar 

  19. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  20. Uematsu K, Ochiai A, Toda K, Sato M (2006) Characterization of YVO4:Eu3+ phosphors synthesized by microwave heating method. J Alloys Compd 408–412:860–863

    Article  Google Scholar 

  21. Wang J, Xua Y, Hojamberdiev M (2009) Hydrothermal synthesis of well-dispersed YVO4:Eu3+ microspheres and their photoluminescence properties. J Alloys Compd 481:896–902

    Article  CAS  Google Scholar 

  22. Uematsu K, Toda K, Sato M (2005) Characterization of YVO4:Eu3+ phosphors synthesized by microwave heating method. J Alloys Compd 389:209–214

    Article  CAS  Google Scholar 

  23. He F, Yang P, Niu N, Wang W, Gai S, Wang D, Lin J (2010) Hydrothermal synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy, and Sm) microspheres. J Colloid Interface Sci 343:71–78

    Article  PubMed  CAS  Google Scholar 

  24. Zhou YH, Lin J (2005) Morphology control and luminescence properties of YVO4:Eu phosphors prepared by spray pyrolysis. Opt Mater 27:1426–1432

    Article  CAS  Google Scholar 

  25. Su X-Q, Yan B (2005) In situ chemical co-precipitation synthesis of YVO4:RE (RE = Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors. J Non-Cryst Solids 351:3542–3546

    Article  CAS  Google Scholar 

  26. Zhou YH, Lin J (2006) Luminescent properties of YVO4:Dy3+ phosphors prepared by spray pyrolysis. J Alloys Compd 408–412:856–859

    Article  Google Scholar 

  27. Chang YS, Huang FM, Tsai YY, Teoh LG (2009) Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process. J Lumin 129:1181–1185

    Article  CAS  Google Scholar 

  28. Zhang H, Fu X, Niu S, Xin Q (2008) Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy). J Alloys Compd 457:61–65

    Article  CAS  Google Scholar 

  29. Li J, Chem Y, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28:781–790

    Article  PubMed  CAS  Google Scholar 

  30. Murakami K (1998) Phosphors and lamps. In Shionoya S, Yen WM (eds) Phosphor handbook. CRC Press.

  31. Hsu C, Powell RC (1975) Energy transfer in europium doped yttrium vanadate crystals. J Lumin 10:273–293

    Article  CAS  Google Scholar 

  32. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag, Berlin

    Book  Google Scholar 

  33. Yanhong L, Guangyan H (2005) Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+. J Solid State Chem 178:645–649

    Article  Google Scholar 

  34. Nassar EJ, Pereira PFS, Nassor ECO, Avila LR, Ciuffi KJ, Calefi PS (2007) Nonhydrolytic sol-gel synthesis and characterization of YAG. J Mater Sci 42:2244–2249

    Article  CAS  Google Scholar 

  35. Zhou L, Choy WCH, Shi J, Gong M, Liang H, Yuk TI (2005) Synthesis, vacuum ultraviolet and near ultraviolet-excited luminescent properties of GdCaAl3O7:RE3+ (RE=Eu, Tb). J Solid State Chem 178:3004–3009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge FAPESP, CNPq, and CAPES (Brazilian research funding agencies) for support of this work and the Rare Earths laboratory of the University of São Paulo for the luminescence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Nassar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltarelli, M., Luz, P.P., Matos, M.G. et al. Influence of Catalyses on the Preparation of YVO4:Eu3+ Phosphors by the Sol–gel Methodology. J Fluoresc 22, 899–906 (2012). https://doi.org/10.1007/s10895-011-1028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-1028-7

Keywords

Navigation