Skip to main content
Log in

Luminescent Donor-Acceptor β-Diketones: Modulation of Emission by Solvent Polarity and Group II Metal Binding

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A class of aryl trifluoromethyl-containing β-diketones were synthesized via one step Claisen condensation. These π-conjugated diketones exhibit strong solvatochromism from intramolecular donor-acceptor charge transfer (CT). In addition, fluorescence quantum yields (ϕf) and lifetimes (τf) were measured in different solvents. Diketones exhibit bathochromic shifts in emission spectra with increasing solvent polarity. Fluorescence changes upon Group II metal binding were also studied. Despite the relatively simple structure, the anthracene-CF3 diketone, atm, has strong binding affinity for Mg2+. A 70 nm blue shift and sixfold increase in intensity were observed upon addition of only one equivalent MgCl2 in ethanol solution. It also shows selectivity for Mg2+ binding even in the presence of excess Ca2+. Association constant (Ka) calculations suggest atm has two orders of magnitude stronger chelation for divalent magnesium than for calcium. These findings make atm an attractive starting point for molecular probe and light emitting material design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4032. doi:10.1021/cr940745l

    Article  PubMed  Google Scholar 

  2. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signalling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566. doi:10.1021/cr960386p

    Article  PubMed  Google Scholar 

  3. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791. doi:10.1126/science.270.5243.1789

    Article  CAS  Google Scholar 

  4. Peumans P, Bulović V, Forrest SR (2000) Efficient high-bandwidth organic multilayer photodetectors. Appl Phys Lett 76:3855–3857. doi:10.1063/1.126800

    Article  CAS  Google Scholar 

  5. Burrows PE, Shen Z, Bulović V, McCarty DM, Forrest SR, Cronin JA, Thompson ME (1996) Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J Appl Phys 79:7991–8006. doi:10.1063/1.362350

    Article  CAS  Google Scholar 

  6. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (alpha, beta, and gamma) and bond length alternation. J Am Chem Soc 116:10703–10714. doi:10.1021/ja00102a040

    Article  CAS  Google Scholar 

  7. Desvergne JP, Czarnik AW (1997) Chemosensors of ion and molecule recognition. Springer, London

    Google Scholar 

  8. Fery–Forgues S, Lavabre D, Rochal AD (1998) Strong interaction between a fluorescent β-diketone derivative and alkali and alkaline earth cations in solution studied by spectrophotometry. N J Chem 22:1531–1538. doi:10.1039/a802688b

    Article  Google Scholar 

  9. Pettinari C, Marchetti F, Drozdov A (2003) β-Diketones and related ligands. Coord Chem Rev II 1:97–115

    Google Scholar 

  10. DeOliveira E, Neri CR, Serra OA, Prado AGS (2007) Antenna effect in highly luminescent Eu3+ anchored in hexagonal mesoporous silica. Chem Mater 19:5437–5442. doi:10.1021/cm701997y

    Article  CAS  Google Scholar 

  11. Banet P, Legagneux L, Hesemann P, Moreau JJE, Nicole L, Quach A, Sanchez C, Tran-Thi TH (2008) Hybrid mesostructured thin films functionalized with DBM as new selective sensors of BF3. Sens Actuators B Chem 130:1–8. doi:10.1016/j.snb.2007.07.103

    Article  Google Scholar 

  12. Huang W, Wang J, Shen Q, Zhou X (2007) An efficient Yb(OTf) 3 catalyzed alkylation of 1, 3-dicarbonyl compounds using alcohols as substrates. Tetrahedron Lett 48:3969–3973. doi:10.1016/j.tetlet.2007.04.047

    Article  CAS  Google Scholar 

  13. Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL (2007) Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J Am Chem Soc 129:8942–8943. doi:10.1021/ja0720255

    Article  PubMed  CAS  Google Scholar 

  14. Pfister A, Zhang G, Zareno J, Horwitz AF, Fraser CL (2008) Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. ACS Nano 2:1252–1258. doi:10.1021/nn7003525

    Article  PubMed  CAS  Google Scholar 

  15. Gorczynski JL, Chen J, Fraser CL (2005) Iron tris(dibenzoylmethane)-centered polylactide stars: Multiple roles for the metal complex in lactide ring-opening polymerization. J Am Chem Soc 127:14956–14957. doi:10.1021/ja0530927

    Article  PubMed  CAS  Google Scholar 

  16. Bender JL, Corbin PS, Fraser CL, Metcalf DH, Richardson FS, Thomas EL, Urbas AM (2002) Site-isolated luminescent europium complexes with polyester macroligands: Metal-centered heteroarm stars and nanoscale assemblies with labile block junctions. J Am Chem Soc 124:8526–8527. doi:10.1021/ja0261269

    Article  PubMed  CAS  Google Scholar 

  17. Cowan JA (1995) Biological chemistry of magnesium. VCH, New York

    Google Scholar 

  18. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. doi:10.1038/nrm1155

    Article  PubMed  CAS  Google Scholar 

  19. Goldschmidt V, Didierjean J, Ehresmann B, Ehresmann C, Isel C, Marquet R (2006) Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance. Nucleic Acids Res 34:42–52. doi:10.1093/nar/gkj411

    Article  PubMed  CAS  Google Scholar 

  20. Kirschberg T, Parrish J (2007) Metal chelators as antiviral agents. Curr Opin Drug Discov Devel 10:460–472

    PubMed  CAS  Google Scholar 

  21. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R (2003) Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem 75:3784–3791. doi:10.1021/ac0342323

    Article  PubMed  CAS  Google Scholar 

  22. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Innovation: looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586. doi:10.1038/nrm1153

    Article  PubMed  CAS  Google Scholar 

  23. Uekawa M, Miyamoto Y, Ikeda H, Kaifu K, Nakaya T (1997) Synthesis and luminescent properties of europium complexes. Synth Met 91:259–262. doi:10.1016/S0379-6779(97)04027-7

    Article  CAS  Google Scholar 

  24. Li Y, Yan B, Yang H (2008) Construction, characterization, and photoluminescence of mesoporous hybrids containing europium(III) complexes covalently bonded to SBA-15 directly functionalized by modified β-diketone. J Phys Chem C 112:3959–3968. doi:10.1021/jp710023q

    Article  CAS  Google Scholar 

  25. λ1: anthracene moiety absorption maximum; λ2: charge-transfer band maximum

  26. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, p 54

    Google Scholar 

  27. Kawski A (1992) Progress in photochemistry and photophysics. In: Rabek F (ed). CRC, Boca Raton, pp. 1–47

  28. Carraway ER, Demas JN, DeGraff BA (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition metal complexes. Anal Chem 63:332–336. doi:10.1021/ac00004a006

    Article  CAS  Google Scholar 

  29. Crosby GA, Demas JN (1971) The measurement of photoluminescence quantum yields. J Phys Chem 75:991–1024. doi:10.1021/j100678a001

    Article  CAS  Google Scholar 

  30. Bohne C, Ihmels H, Waidelich M, Yihwa C (2005) N-acylureido functionality as acceptor substituent in solvatochromic fluorescence probes: Detection of carboxylic acids, alcohols, and fluoride ions. J Am Chem Soc 127:17158–17159. doi:10.1021/ja052262c

    Article  PubMed  CAS  Google Scholar 

  31. Ihmels H, Meiswinkel A, Mohrschladt CJ, Otto D, Waidelich M, Towler M, White R, Albrecht M, Schnurpfeil A (2005) Anthryl-substituted heterocycles as acid-sensitive fluorescence probes. J Org Chem 70:3929–3938. doi:10.1021/jo047841z

    Article  PubMed  CAS  Google Scholar 

  32. Ihmels H, Meiswinkel A, Mohrschladt C (2002) Novel fluorescence probes based on 2, 6-donor-acceptor-substituted anthracene derivatives. J Org Lett 2:2865–2868. doi:10.1021/ol006291y

    Article  Google Scholar 

  33. Wang P, Wu S (1995) Spectroscopy and photophysics of bridged enone derivatives: effect of molecular structure and solvent. J Photochem Photobiol Chem 86:109–113. doi:10.1016/1010-6030(94)03921-G

    Article  CAS  Google Scholar 

  34. Iglesias E (1996) Enolization of benzoylacetone in aqueous surfactant solutions: A novel method for determining enolization constants. J Phys Chem 100:12592–12599. doi:10.1021/jp960473l

    Article  CAS  Google Scholar 

  35. Iglesias E (1997) Determination of keto–enol equilibrium constants and the kinetic study of the nitrosation reaction of β-dicarbonyl compounds. J Chem Soc Perkin Trans 2:431–440. doi:10.1039/a607039f

    Google Scholar 

  36. Sato Y, Morimoto M, Segawa H, Shimidzu T (1995) Twisted intramolecular charge-transfer state of a donor-acceptor molecular system with a β-diketone bridge: tuning of emission through structural restriction by metal cation coordination. J Phys Chem 99:35–39. doi:10.1021/j100001a007

    Article  CAS  Google Scholar 

  37. Hatch LF, Sutherland G (1948) Certain metal derivatives of 2, 4-pentanedione. J Org Chem 13:249–253. doi:10.1021/jo01160a012

    Article  PubMed  CAS  Google Scholar 

  38. Bertrand JA, Caine D (1964) Preparation and properties of methoxo complexes of divalent metal ions. J Am Chem Soc 86:2298–2299. doi:10.1021/ja01065a048

    Article  CAS  Google Scholar 

  39. Thomas SW III, Venkatesan K, Muller P, Swager TM (2006) Dark-field oxidative addition-based chemosensing : New bis-cyclometalated Pt(II) complexes and phosphorescent detection of cyanogen halides. J Am Chem Soc 128:16641–16648. doi:10.1021/ja065645z

    Article  PubMed  CAS  Google Scholar 

  40. Van Ujtert LG (1983) Chelate compound stability constant calculations on metal diketonate complexes. Polyhedron 2:285–269. doi:10.1016/S0277-5387(00)83915-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (CHE 0718879 (C. L. F.), CHE 0410061 (J. N. D.)) for support for this research, the Korean Research Foundation for an internship (S. H. K.) and Kwangwoon University for 2008 sabbatical leave (B. H. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra L. Fraser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Kim, S.H., Evans, R.E. et al. Luminescent Donor-Acceptor β-Diketones: Modulation of Emission by Solvent Polarity and Group II Metal Binding. J Fluoresc 19, 881–889 (2009). https://doi.org/10.1007/s10895-009-0487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0487-6

Keywords

Navigation