Skip to main content
Log in

Photochemical Characterization of Up-Converting Inorganic Lanthanide Phosphors as Potential Labels

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We have characterized commercially available up-converting inorganic lanthanide phosphors for their rare earth composition and photoluminescence properties under infrared laser diode excitation. These up-converting phosphors, in contrast to proprietary materials reported earlier, are readily available to be utilized as particulate reporters in various ligand binding assays after grinding to submicron particle size. The laser power density required at 980 nm to generate anti-Stokes photoluminescence from these particulate reporters is significantly lower than required for two-photon excitation. The narrow photoluminescence emission bands at 520–550 nm and at 650–670 nm are at shorter wavelengths and thus totally discriminated from autofluorescence and scattered excitation light even without temporal resolution. Transparent solution of colloidal bead-milled up-converting phosphor nanoparticles provides intense green emission visible to the human eye under illumination by an infrared laser pointer. In this article, we show that the unique photoluminescence properties of the up-converting phosphors and the inexpensive measurement configuration, which is adequate for their sensitive detection, render the up-conversion an attractive alternative to the ultraviolet-excited time-resolved fluorescence of down-converting lanthanide compounds widely employed in biomedical research and diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Ekins (1987). An overview of present and future ultrasensitive non-isotopic immunoassay development. Clin. Biochem. Revs. 8, 12–23.

    Google Scholar 

  2. R. P. Ekins (1998). Ligand assays: from electrophoresis to miniaturized microarrays. Clin. Chem. 44, 2015–2030.

    PubMed  Google Scholar 

  3. L. J. Kricka (1999). Nucleic acid detection technologies—Labels, strategies, and formats. Clin. Chem. 45, 453–458.

    PubMed  Google Scholar 

  4. E. Soini and I. Hemmilä (1979). Fluoroimmunoassay: Present status and key problems. Clin Chem 25, 353–361.

    PubMed  Google Scholar 

  5. I. Hemmilä (1985). Fluoroimmunoassays and immunofluorometric assays. Clin. Chem. 31, 359–370.

    PubMed  Google Scholar 

  6. R. P. Ekins and S. Dakubu (1985). The development of high sensitivity pulsed light, time-resolved fluoroimmunoassays. Pure Appl. Chem. 57, 437–482.

    Google Scholar 

  7. E. D. Sevier, G. S. David, J. Martinis, W. J. Desmond, R. M. Bartholomew, and R. Wang (1981). Monoclonal antibodies in clinical immunology. Clin. Chem. 27, 1797–1806.

    PubMed  Google Scholar 

  8. G. S. David and H. E. Greene (1984) Immunometric assays using monoclonal antibodies US Patent 4,486,530.

  9. R. P. Ekins (1989). A shadow over immunoassay. Nature 340, 256–258.

    Article  PubMed  Google Scholar 

  10. R. P. Ekins (1978). Quality control and assay design. in Radioimmunoassay and related procedures in medicine, International Atomic Energy Agency, Vienna, pp. 39–56.

  11. T. M. Jackson, N. J. Marshall, and R. P. Ekins (1983). Optimisation of immunoradiometric (labelled antibody) assays. In W. M. Hunter and J. E. T. Corrie (Eds.), Immunoassays for Clinical Chemistry, Churchill Livingstone, Edinburgh, pp. 557–575.

    Google Scholar 

  12. L. J. Kricka (1994). Selected strategies for improving sensitivity and reliability of immunoassays. Clin. Chem. 40, 347–357.

    PubMed  Google Scholar 

  13. E. Soini and H. Kojola (1983). Time-resolved fluorometer for lanthanide chelates—A new generation of nonisotopic immunoassays. Clin. Chem. 29, 65–68.

    PubMed  Google Scholar 

  14. E. Soini and T. Lövgren (1987). Time-resolved fluorescence of lanthanide probes and applications in biotechnology. CRC Crit. Rev. Anal. Chem. 18, 105–154.

    Google Scholar 

  15. S. Dakubu and R. P. Ekins (1985). The fluorometric determination of europium ion concentration as used in time-resolved fluoroimmunoassay. Anal. Biochem. 144, 20–26.

    Article  PubMed  Google Scholar 

  16. H. Siitari, I. Hemmilä, E. Soini, T. Lövgren, and V. Koistinen (1983). Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature 301, 258–260.

    Article  PubMed  Google Scholar 

  17. I. Hemmilä, S. Dakubu, V.-M. Mukkala, H. Siitari, and T. Lövgren (1984). Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem. 137, 335–343.

    Article  PubMed  Google Scholar 

  18. B. Alpha, V. Balzani, J.-M. Lehn, S. Perathoner, and N. Sabbatini (1987). Luminescence probes: The Eu3+- and Tb3+-cryptates of polypyridine macrobicyclic ligands. Angew. Chem. Int. Ed. Engl. 26, 1266–1267.

    Article  Google Scholar 

  19. H. Takalo, V. M. Mukkala, H. Mikola, P. Liitti, and I. Hemmilä (1994). Synthesis of europium(III) chelates suitable for labeling of bioactive molecules. Bioconjug. Chem. 5, 278–282.

    Article  PubMed  Google Scholar 

  20. P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo (2003). A europium chelate for quantitative point-of-care immunoassays using direct surface measurement. Anal. Chem. 75, 3193–3201.

    Article  PubMed  Google Scholar 

  21. H. Hakala, P. Liitti, K. Puukka, J. Peuralahti, K. Loman, J. Karvinen, P. Ollikka, A. Ylikoski, V.-M. Mukkala, and J. Hovinen (2002). Novel luminescent samarium(III) chelates. Inorg. Chem. Commun. 5, 1059–1062.

    Article  Google Scholar 

  22. J. Karvinen, P. Hurskainen, S. Gopalakrishnan, D. Burns, U. Warrior, and I. Hemmila (2002). Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3. J. Biomol. Screen. 7, 223–231.

    Article  PubMed  Google Scholar 

  23. I. Hemmilä, V. M. Mukkala, M. Latva, and P. Kiilholma (1993). Di- and tetracarboxylate derivatives of pyridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluorometric determination of terbium and dysprosium. J. Biochem. Biophys. Methods 26, 283–290.

    Article  PubMed  Google Scholar 

  24. Y.-Y. Xu, K. Pettersson, K. Blomberg, I. Hemmilä, H. Mikola, and T. Lövgren (1992). Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17-α-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin. Chem. 38, 2038–2043.

    PubMed  Google Scholar 

  25. E. P. Diamandis (1991). Multiple labeling and time-resolvable fluorophores. Clin. Chem. 37, 1486–1491.

    PubMed  Google Scholar 

  26. H. Härmä, T. Soukka, and T. Lövgren (2001). Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem. 47, 561–568.

    PubMed  Google Scholar 

  27. G. Mathis (1993). Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953–1959.

    PubMed  Google Scholar 

  28. K. Blomberg, P. Hurskainen, and I. Hemmilä (1999). Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the beta subunit of human chorionic gonadotropin in serum. Clin. Chem. 45, 855–861.

    PubMed  Google Scholar 

  29. K. Stenroos, P. Hurskainen, S. Eriksson, I. Hemmilä, K. Blomberg, and C. Lindqvist (1998). Homogeneous time-resolved IL-2-IL-2R alpha assay using fluorescence resonance energy transfer. Cytokine 10, 495–499.

    Article  PubMed  Google Scholar 

  30. L. Kokko, K. Sandberg, T. Lövgren, and T. Soukka (2004). Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol. Anal. Chim. Acta. 503, 155–162.

    Article  Google Scholar 

  31. H. B. Beverloo, A. van Schadewijk, H. J. M. A. A. Zijlmans, and H. J. Tanke (1992). Immunochemical detection of proteins and nucleic acids on filters using small luminescent inorganic crystals as markers. Anal. Biochem. 203, 326–334.

    Article  PubMed  Google Scholar 

  32. K. Kömpe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Möller, and M. Haase (2003). Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed. Engl. 42, 5513–5516.

    Article  PubMed  Google Scholar 

  33. J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. van Veggel (2004). Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mater. 15, 4604–4616.

    Article  Google Scholar 

  34. R. Bazzi, M. A. Flores, C. Louis, K. Lebbou, W. Zhang, C. Dujardin, S. Roux, B. Mercier, G. Ledoux, E. Bernstein, P. Perriat, and O. Tillement (2004). Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J. Colloid Interface Sci. 273, 191–197.

    Article  PubMed  Google Scholar 

  35. H. B. Beverloo, A. van Schadewijk, S. van Gelderen-Boele, and H. J. Tanke (1990). Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy. Cytometry 11, 784–792.

    Article  PubMed  Google Scholar 

  36. K. Bohmann, W. Hoheisel, B. Köhler, and I. Dorn (2003) Assay basierend auf dotierten nanoteilchen Deutsches Patent- und Markenamt DE 101 53 829 A1.

  37. J. Feng, G. Shan, A. Maquieira, M. E. Koivunen, B. Guo, B. D. Hammock, and I. M. Kennedy (2003). Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal. Chem. 75, 5282–5286.

    Article  Google Scholar 

  38. M. H. V. Werts, M. A. Duin, J. W. Hofstraat, and J. W. Verhoeven (1999). Bathochromicity of Michler’s ketone upon coordination with lanthanide(III) beta-diketonates enable efficient sensitisation of Eu3+ for luminescence under visible light excitation. Chem. Commun. 1999, 799–800.

    Article  Google Scholar 

  39. W. H. Wright, N. A. Mufti, N. T. Tagg, R. R. Webb, and L. V. Schneider (1997). High-sensitivity immunoassay using a novel upconverting phosphor reporter. Proc. SPIE - Int. Soc. Opt. Eng. 2985, 248–255.

    Google Scholar 

  40. H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke (1999). Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Anal. Biochem. 267, 30–36.

    Article  PubMed  Google Scholar 

  41. F. Auzel (2002). Up-conversion in rare-earth-doped systems: past, present and future. Proc. SPIE - Int. Soc. Opt. Eng. 4766, 179–190.

    Google Scholar 

  42. J. Lakowicz (1997). Topics in fluorescence spectroscopy, Vol. 5, Nonlinear and two-photon-induced fluorescence, Plenum Press, New York.

    Google Scholar 

  43. R. S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, and R. Vallejo (2001). Detection of analytes by immunoassay using up-converting phosphor technology. Anal. Biochem. 293, 22–30.

    Article  PubMed  Google Scholar 

  44. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink (1999). Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666.

    PubMed  Google Scholar 

  45. H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, and H. J. Tanke (1992). Preparation and microscopic visualization of multicolor luminescent immunophosphors. Cytometry 13, 561–570.

    Article  PubMed  Google Scholar 

  46. J. Hampl, M. Hall, N. A. Mufti, Y. M. Yao, D. B. MacQueen, W. H. Wright, and D. E. Cooper (2001). Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem. 288, 176–187.

    Article  PubMed  Google Scholar 

  47. F. Song, M. Myers, S. Jiang, Y. Feng, X. B. Chen, and G. Y. Zhang (1999). Effect of erbium concentration on upconversion luminescence of Er:Yb:phosphate glass excited by InGaAs laser diode. Proc. SPIE - Int. Soc. Opt. Eng. 3622, 182–188.

    Google Scholar 

  48. J. Karvinen, A. Elomaa, M. L. Makinen, H. Hakala, V. M. Mukkala, J. Peuralahti, P. Hurskainen, J. Hovinen, and I. Hemmila (2004). Caspase multiplexing: Simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6. Anal. Biochem. 325, 317–325.

    Article  PubMed  Google Scholar 

  49. V. K. Bogdanov, D. J. Booth, and W. E. K. Gibbs (2003). Energy transfer processes and the green fluorescence in heavily doped Er3+: Fluoride glasses. J. Non-Cryst. Solids 321, 1–135.

    Article  Google Scholar 

  50. N. M. P. Low and A. L. Major (1971). Effects of preparation on the anti-stokes luminescence of Er-activated rare-earth phosphors. J. Lumin. 4, 357–368.

    Article  Google Scholar 

  51. F. Auzel (2004). Upconversion and anti-Stokes processes in f and d ions in solids. Chem. Rev. 104, 139–173.

    Article  PubMed  Google Scholar 

  52. F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol. 19, 273–276.

    Article  PubMed  Google Scholar 

  53. G. Yi, B. Sun, F. Yang, D. Chen, Y. Zhou, and J. Cheng (2002). Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: Ytterbium and erbium codoped lanthanum molybdate. Chem. Mater. 14, 2910–2914.

    Article  Google Scholar 

  54. T. Hirai and T. Orikoshi (2004). Preparation of yttrium oxysulfide phosphor nanoparticles with infrared-to-green and -blue upconversion emission using an emulsion liquid membrane system. J. Colloid Interface Sci. 273, 470–477.

    Article  PubMed  Google Scholar 

  55. T. Hirai and T. Orikoshi (2004). Preparation of Gd2O3:Yb,Er and Gd2O2S:Yb,Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system. J. Colloid Interface Sci. 269, 103–108.

    Article  PubMed  Google Scholar 

  56. S. Heer, O. Lehmann, M. Haase, and H. U. Güdel (2003). Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. Engl. 42, 3179–3182.

    Article  PubMed  Google Scholar 

  57. S. Heer, K. Kömpe, H.-U. Güdel, and M. Haase (2004). Highly efficient multicolour upconversion emission in transparent colloids of nanoparticle-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105.

    Article  Google Scholar 

  58. T. Soukka, H. Härmä, J. Paukkunen, and T. Lövgren (2001). Immunoassays based on multivalent nanoparticle-antibody bioconjugates utilize kinetically enhanced monovalent binding affinity. Anal. Chem. 73, 2254–2260.

    Article  PubMed  Google Scholar 

  59. P. L. Corstjens, M. Zuiderwijk, M. Nilsson, H. Feindt, R. Sam Niedbala, and H. J. Tanke (2003). Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. Anal. Biochem. 312, 191–200.

    Article  PubMed  Google Scholar 

  60. I. Hemmilä and V.-M. Mukkala (2001). Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays. Crit. Rev. Clin. Lab. Sci. 38, 441–519.

    Article  Google Scholar 

  61. T. Steinkamp and U. Karst (2004). Detection strategies for bioassays based on luminescent lanthanide complexes and signal amplification. Anal. Bioanal. Chem. 380, 24–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Soukka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soukka, T., Kuningas, K., Rantanen, T. et al. Photochemical Characterization of Up-Converting Inorganic Lanthanide Phosphors as Potential Labels. J Fluoresc 15, 513–528 (2005). https://doi.org/10.1007/s10895-005-2825-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2825-7

Keywords

Navigation