Skip to main content
Log in

Comparison of Two Tricarbocyanine-Based Dyes for Fluorescence Optical Imaging

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Optical technologies are evolving in many biomedical areas including the biomedical imaging disciplines. Regarding the absorption properties of physiological molecules in living tissue, the optical window ranging from 700 to 900 nm allows to use fluorescent dyes for novel diagnostic solutions. Here we investigate the potential of two different carbocyanine-based dyes fluorescent in the near infrared as contrast agents for in vivo imaging of subcutaneously grown tumours in laboratory animals. The primary aim was to modify the physicochemical properties of the previously synthesized dye SIDAG to investigate the effect on the in vivo imaging properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CCD:

charge-coupled device

MRI:

magnetic resonance imaging

NIR:

near infrared

References

  1. E. E. Graves, R. Weissleder, and V. Ntziachristos (2004). Fluorescence molecular imaging of small animal tumor models. Curr. Mol. Med. 4, 419–430.

    Google Scholar 

  2. J. P. Houston, A. B. Thomson, M. Gurfinkel, and E. M. Sevick-Muraca (2003). Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorscence contrast-enhanced imaging. Photochem. Photobiol. 77, 420–430.

    Google Scholar 

  3. B. Ebert, U. Sukowski, D. Grosenick, H. Wabnitz, K. T. Moesta, K. Licha, A. Becker, W. Semmler, P. M. Schlag, and H. Rinneberg (2001). Near-infrared fluorescent dyes for enhanced contrast in optical mammography: Phantom experiments. J. Biomed. Opt. 6, 134– 140.

    Google Scholar 

  4. M. A. Francescini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke (1997). Frequency-domain techniques enhance optical mammography: Initial clinical results. Proc. Natl. Acad. Sci. USA 94, 6468–6473.

    Google Scholar 

  5. L. Goetz, H. Heywang-Koebrunner, O. Schuetz, and H. Siebold (1998). Optische Mammographie an praeoperativen Patientinnen. Acad. Radiol. 8, 31–33.

    Google Scholar 

  6. D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, and P. M. Schlag (1999). Development of a time-domain optical mammograph and first in vivo applications. Appl. Opt. 38, 2927–2943.

    Google Scholar 

  7. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, Ch. Stroszynski, R. MacDonald, P. M. Schlag, and H. Rinneberg (2003). Time-domain optical mammography: Initial clinical results on detection and characterization of breast tumors. Appl. Opt. 42, 3170– 3186.

    Google Scholar 

  8. V. Ntziachristos and R. Weissleder (2002). Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. Med. Phys. 29(5), 803–809.

    Google Scholar 

  9. X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, and G. Yodh (1995). Tumor localization using fluorescence of indocyanin green (ICG) in rat models. SPIE 2389, 789–798.

    Google Scholar 

  10. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca (1999). Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol. 70, 87–94.

    Google Scholar 

  11. S. Zhao, M. A. O’Leary, S. Nioka, and B. Chance (1995). Breast tumor detection using continuous wave light source. SPIE 2389, 789–798.

    Google Scholar 

  12. M. M. Haglund, M. S. Berger, and D. W. Hochmann (1996). Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 38, 309–317.

    Google Scholar 

  13. C. M. Leevy, F. Smith, J. Longuevill, G. Paumgartner, and M. M. Howard (1967). Indocyanine green clearance as a test for hepatic function. Evaluation by dichromatic ear densitometry. J. Am. Med. Assoc. 200, 236.

    Google Scholar 

  14. R. W. Flower and B. E. Hochheimer (1976). Indocyanine green dye fluorescence and infrared absorption choroidal angiography performing simultaneously with fluorescein angiography. John Hopkins Med. J. 138, 33–42.

    Google Scholar 

  15. G. Paumgarten, P. Probst, K. Kraines, and C. M. Leevy (1970). Kinetics of indocyanine green removal from the blood. N. Y. Acad. Sci. 170, 134–114.

    Google Scholar 

  16. D. K. F. Meijer, B. Weert, and G. A. Vermeer (1988). Pharmakokinetics of biliary excretion in man. VI. Indocyanine green. Eur. J. Clin. Pharmacol. 35, 295–303.

    Google Scholar 

  17. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler (2000). Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol. 72, 392–398.

    Google Scholar 

  18. P. Dawson (1996). X-ray contrast-enhancing agents. Eur. J. Radiol. 23, 172–177.

    Google Scholar 

  19. A. N. Oksendal and P.-A. Hals (1993). Biodistribution and toxicity of MR imaging contrast media. JMRI 1, 157–165.

    Google Scholar 

  20. S. Mordon, J. M. Devoiselle, S. Soulie-Begu, and T. Desmettre (1998). Indocyanine green: Physisochemical factors affecting its fluorescence in vivo. Microvasc. Res. 55, 146–152.

    Google Scholar 

  21. T. Desmettre, J. M. Devoiselle, and S. Mordon (2000). Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv. Opthalmol. 45, 15–27.

    Google Scholar 

  22. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance (2003). In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med. Phys. 30, 1039–1047.

    Google Scholar 

  23. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance (2000). Concurent MRI and diffuse optical tomography of breast after indocyanine green enhancement. PNAS 97, 2767–2772.

    Google Scholar 

  24. J. R. Less, M. C. Posner, Y. Boucher, D. Borochovitz, N. Wolmark, and R. K. Jain (1992). Interstitial hypertension in human breast and colorectals tumors. Cancer Res. 52, 6371–6374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christin Perlitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlitz, C., Licha, K., Scholle, FD. et al. Comparison of Two Tricarbocyanine-Based Dyes for Fluorescence Optical Imaging. J Fluoresc 15, 443–454 (2005). https://doi.org/10.1007/s10895-005-2636-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2636-x

Key Words

Navigation