Skip to main content

Advertisement

Log in

Power and Sizes of Tokamak Fusion Neutron Sources with NBI-Enhanced Reaction Rate

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Steady state tokamak with deuterium–tritium plasma is considered as a basis for fusion neutron source for a hybrid fusion–fission reactor. Prototypes of such a system can be developed on the basis of the present day tokamaks as the plasma power gain factor Q ~ 1 is required for hybrid applications. Significant population of fast ions can be supported by a powerful neutral beam injection heating in regimes with Q ~ 1. The reaction rate for fast ions greatly exceeds the rate for thermal Maxwellian ions. The possible ranges of parameters are discussed for medium size tokamaks with minor plasma radius a = 0.5–1 m. Power and sizes of the neutron source are determined by the value of the injection energy. Power gain Q ≈ 1 can be achieved with injection energy of deuterium about 130 keV and tritium energy about 200 keV. Neutron power of 30–40 MW can be realized with a ≈ 1 m, and about of few megawatts with a ≈ 0.5 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.M. Stacey, Georgia tech studies of sub-critical advanced burner reactors with a D–T fusion tokamak neutron source for the transmutation of spent nuclear fuel. J. Fusion Energ. 28, 328–333 (2009)

    Article  ADS  Google Scholar 

  2. M. Kotschenreuther, S. Mahajan, P. Valanju et al., Near term fusion–fission hybrids. Fusion Eng. Des. 84, 83–88 (2009)

    Article  Google Scholar 

  3. R.W. Moir, W. Manheimer, The Fusion Hybrid as a Key to Sustainable Development. Lecture Notes in Energy, vol. 19, chapter 14 (Springer, 2013), pp. 699–472

  4. B.V. Kuteev, E.A. Azizov, A.S. Bykov et al., Steady-state operation in compact tokamaks with copper coils. Nucl. Fusion 51, 073013 (2011)

    Article  ADS  Google Scholar 

  5. D.M. Meade, Recent progress on the Tokamak Fusion Test Reactor. J. Fusion Energ. 15, 163–167 (1996)

    Article  ADS  Google Scholar 

  6. A.J.H. Donné, S. Cowley, T. Jones, X. Litaudon, JET Contributors, Risk mitigation for ITER by a prolonged and joint international operation of JET. J. Fusion Energ. 35, 85–93 (2016)

    Article  Google Scholar 

  7. A.Yu. Chirkov, Optimal parameters of fusion neutron sources with powerful injection heating. J. Fusion Energ. 34, 528–531 (2015)

    Article  Google Scholar 

  8. A.Yu. Chirkov, Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamak with two-component plasma. Nucl. Fusion 55, 113027 (2015)

    Article  ADS  Google Scholar 

  9. M. Dawson, H.P. Furth, F.H. Tenney, Production of thermonuclear power by non-Maxwellian ions in a closed magnetic configuration. Phys. Rev. Lett. 26, 1156–1160 (1971)

    Article  ADS  Google Scholar 

  10. D.L. Jassby, Optimization of fusion power density in the two-energy-component tokamak reactor. Nucl. Fusion 15, 453–464 (1975)

    Article  ADS  Google Scholar 

  11. R.J. Hawryluk, S. Batha, W. Blanchard et al., Fusion plasma experiments on TFTR: a 20 year retrospective. Phys. Plasmas 5, 1577–1589 (1998)

    Article  ADS  Google Scholar 

  12. J.D. Strachan, S. Batha, M. Beer et al., TFTR DT experiments. Plasma Phys. Control. Fusion 39, B103–B114 (1997)

    Article  Google Scholar 

  13. V.I. Khvesyuk, A.Yu. Chirkov, Analysis of the mechanisms for the scattering of plasma particles by non-steady-state fluctuations. Tech. Phys. 49, 396–404 (2004)

    Article  Google Scholar 

  14. A.Yu. Chirkov, Influence of weak electrostatic perturbations on the trajectories of circulating particles in a tokamak magnetic field. Tech. Phys. 49, 1586–1590 (2004)

    Article  Google Scholar 

  15. H.-S. Bosh, G.M. Hale, Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611–631 (1992)

    Article  ADS  Google Scholar 

  16. C. Gormezano et al., Progress in ITER physics basis: chapter 6: steady state operation. Nucl. Fusion 47, S285–S336 (2007)

    Article  ADS  Google Scholar 

  17. S.V. Mirnov, From pure fusion to fusion–fission Demo tokamaks. Plasma Phys. Control. Fusion 55, 045003 (2013)

    Article  ADS  Google Scholar 

  18. A.Yu. Chirkov, Low radioactivity fusion reactor based on the spherical tokamak with a strong magnetic field. J. Fusion Energ. 32, 208–214 (2013)

    Article  ADS  Google Scholar 

  19. Y.I. Kolesnichenko, V.V. Parail, G.V. Pereverzev, in Reviews of Plasma Physics, vol. 17, ed. by B.B. Kadomtsev (Konsultants Bureau, New York, 1992), p. 1

    Chapter  Google Scholar 

  20. M. Peng, Spherical torus pathway to fusion power. J. Fusion Energ. 17, 45–59 (1998)

    Article  ADS  Google Scholar 

  21. M. Wang, Q. Zeng, J. Jiang, Y. Wu, Neutronic analysis and optimization for fusion driven subcritical spent fuel burning system. J. Fusion Energ. 34, 598–603 (2015)

    Article  Google Scholar 

  22. C.E. Valesquez, C. Pereira, M.A.F. Veloso, A.L. Costa, G.D. Barros, Fusion–fission hybrid systems for transmutation. J. Fusion Energ. 35, 505–512 (2016)

    Article  Google Scholar 

  23. C.S. Fabiano, C. Pereira, A.L. Costa, M.A.F. Veloso, R. Cunha, A neutronic evaluation of reprocess fuel and depletion study of VHTR using MCNPX and WIMSD5 code. Fusion Sci. Technol. 61, 338–342 (2012)

    Google Scholar 

  24. Report of the Research Needs Workshop 2009 Gaithersburg. http://fire.pppl.gov/Hybrid_Report_Final.pdf

  25. Y. Wu, et al., 2010 23rd IAEA Fusion Energy Conference, Daejeon. FTP/P1-13. http://www-pub.iaea.org/mtcd/meetings/PDFplus/2010/cn180/cn180_papers/ftp_p1-13.pdf

  26. K.R. Schultz, Gas-cooled fusion–fission hybrid reactor systems. J. Fusion Energ. 1, 163–183 (1981)

    Article  ADS  Google Scholar 

  27. F. Najmabadi et al., The ARIES-AT advanced tokamak, advanced technology fusion power plant. Fusion Eng. Des. 80, 3–23 (2006)

    Article  Google Scholar 

  28. T.J. Dolan, L.M. Waganer, L.C. Cadwallader, Power Plant Designs, in Magnetic Fusion Technology, ed. by T.J. Dolan. Lecture Notes in Energy, vol. 19 (2013), pp. 653–696

  29. S.C. Xiao, J. Zhao, Z. Zhou, Y. Yang, Neutronic study of a molten salt cooled natural thorium–uranium fueled fusion–fission hybrid energy system. J. Fusion Energ. 34, 352–360 (2015)

    Article  Google Scholar 

  30. J.D. Strachan, M.G. Bell, M. Bitter et al., Neutron emission from TFTR supershots. Nucl. Fusion 33, 991–1008 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Work was supported by the Russian Ministry of Education and Science, the Contract No. 13.2573.2014/K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Chirkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almagambetov, A.N., Chirkov, A.Y. Power and Sizes of Tokamak Fusion Neutron Sources with NBI-Enhanced Reaction Rate. J Fusion Energ 35, 841–848 (2016). https://doi.org/10.1007/s10894-016-0111-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0111-0

Keywords

Navigation