Skip to main content
Log in

The Effect of Plasma Profiles on the Critical Value of \(n\uptau_{E}\) for Ignition

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The effect of plasma profiles for ignition condition in a stationary D–T plasma is investigated using the energy conservation equations for ions and electrons, assuming that steady state fusion power is produced with no external power. The alpha power heating is sufficiently large to sustain the plasma and to balance the combined Bremsstarhlung and thermal conduction losses. The space dependent Lawson criteria is derived and critical condition is identified. As a result of this analysis we have shown that the optimum temperature might be \(\bar{T} \approx 26\,{\text{keV}}\) and that the peaked profiles with \(n\sim\left( {1 - \frac{{r^{2} }}{{a^{2} }}} \right)^{{v_{n} }}\), ν n  = 1, and \(T\sim\left( {1 - \frac{{r^{2} }}{{a^{2} }}} \right)^{{v_{T} }} ,\,v_{T} = 2\) are good to minimizing \(\bar{n}\uptau_{E}\) for ignition. The results for these profiles show the critical value of \((\bar{n}\uptau_{E} )_{min} = 0.08 \times 10^{20 } \,{\text{m}}^{ - 3} \,{\text{s}}\) showing the reduction by 1/3 from the reference value limit ν n  = ν T  = 0. For a 26 keV plasma with an energy confinement time of 1 s, a pressure of about 6.24 atm is required for the plasma to be ignited; that is, it is sustained purely by the self-heating of the fusion alpha particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.M. Meade, C.E. Kessel, M.A. Ulricksonet et al., in Advanced tokamak regimes in the fusion ignition research experiment (FIRE). Proceedings of the 30th European Physical Society Conference on Controlled Fusion and Plasma Physics (7–11 July 2003, St. Petersburg, Russia). http://eps2003.ioffe.ru/

  2. T.J. Dolan, Fusion reaserch, corrected edn. (Pergamon Press, Oxford, 2000)

    Google Scholar 

  3. M. Jakobs, N. Lopes Cardozo, R. Jaspers, Fusion burn equilibria sensitive to the ratiobetween energy and helium transport. Nucl. Fusion 54, 122005–122009 (2014)

    Article  ADS  Google Scholar 

  4. B. Coppi, A. Airoldi, F. Bombarda, G. Cenacchi, P. Detragiache, L.E. Sugiyama. Optimal regimes for ignition and the igniter experiment, Nucl. Fusion, 41 (2001)

  5. M. Greenwald, D. Gwinn, S. Milora et al., Phys. Rev. Lett. 53, 352 (1984)

    Article  ADS  Google Scholar 

  6. B. Coppi, Comments Plasma Phys. Controll. Fusion 5, 261 (1979)

    Google Scholar 

  7. B. Coppi, E. Mazzucato, Phys. Lett. 71A, 337 (1979)

    Article  ADS  Google Scholar 

  8. R.J. Goldston, Plasma Phys. Controll. Fusion 26, 87 (1984)

    Article  ADS  Google Scholar 

  9. P.H. Rebut, M. Brusati, Plasma Phys. Controll. Fusion 28, 113 (1986)

    Article  ADS  Google Scholar 

  10. H.P. Furth, A.H. Glasser, W. Park, P.H. Rutherford, H. Selberg, R.B. White, in Controlled fusion and plasma physics (Proceedings of 12th European Conference, Budapest, 1985), Vol. 3, European Physical Society (1985) 358

  11. B.B. Kadomtsev, Philos. Trans. R. Soc. London A322, 125 (1987); also “Tokamak Plasma Self-Organization”, talk at IAEA INTOR Workshop (Kyoto, Japan, 1986)

  12. J. Kesner, R.W. Conn, Space-dependent effects on the lawson and ignition conditions and thermal equilibria in tokamaks. Nucl. Fusion 16(3), 397 (1976)

    Article  ADS  Google Scholar 

  13. W.M. Stacey, Fusion plasma physics (Wiley-VCH, Hoboken, 2005)

    Book  Google Scholar 

  14. J. Friedberg, Plasma physics and fusion energy (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  15. H.S. Bosch, G.M. Hale, Improved formulas for fusion cross-section and thermal reactivities. Nucl. Fusion 32, 611–663 (1992)

    Article  ADS  Google Scholar 

  16. T.A. Hltemes, G.A. Moses, J.F. Santerius, Analysis of an improved fusion reaction rate model for use in fusion plasma simulation (Fusion Technology Institute, University of Wisconsin, Madison, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Khosrowpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosrowpour, B., Nassiri-Mofakham, N. The Effect of Plasma Profiles on the Critical Value of \(n\uptau_{E}\) for Ignition. J Fusion Energ 35, 513–518 (2016). https://doi.org/10.1007/s10894-016-0084-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0084-z

Keywords

Navigation