Skip to main content
Log in

A Systematic Study for Cross Sections on (d, 2n) Nuclear Reactions Between 11.57 and 18.91 MeV

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The cross sections of deuteron-induced nuclear reactions have a critical importance on future fusion devices. In this study, the Coulomb and asymmetry term effects for the cross sections of (d, 2n) nuclear reactions have been investigated. The reaction cross sections have been calculated by using empirical formulas depended on the asymmetry parameter for incident deuteron energies between 11.57 and 18.91 MeV. The results obtained from the formulas have been discussed and compared with the TENDL-2013 online library data, the code ALICE/ASH calculations (equilibrium Weisskopf Ewing, pre-equilibrium hybrid and geometry dependent hybrid theories) and the experimental values in literature. The present empirical formulas predictions of the reaction cross sections show generally good agreement with the model results and experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Yiğit et al., J. Fusion Energ. 32, 362–370 (2013)

    Article  ADS  Google Scholar 

  2. M. Yiğit et al., J. Fusion Energ. 32, 317–321 (2013)

    Article  ADS  Google Scholar 

  3. E. Tel et al., J. Fusion Energ. 32, 273–277 (2013)

    Article  ADS  Google Scholar 

  4. A.O. Kadenko et al., http://arxiv.org/abs/1306.6210 (2013)

  5. C.H.M. Broeders et al., JEF/DOC-1154 (2006)

  6. C.H.M. Broeders, AYu. Konobeyev, Appl. Radiat. Isot. 65, 1249 (2007)

    Article  Google Scholar 

  7. E. Tel et al., Appl. Radiat. Isot. 67, 272–276 (2009)

    Article  Google Scholar 

  8. E. Tel et al., Phys. Atomic Nucl. 73, 412–419 (2010)

    Article  ADS  Google Scholar 

  9. V.N. Levkovskii, Sov. Phys. JETP 18, 213 (1964)

    Google Scholar 

  10. A.J. Koning et al., TENDL-2013: TALYS-based Evaluated Nuclear Data Library (2013), http://www.talys/tendl2013/deuteron_html/deuteron.html

  11. R.A. Forrest et al., The European Activation File: EAF-2005 Cross Section Library, Report UKAEA, FUS 515 (2005)

  12. M. Yiğit, E. Tel, Nucl. Eng. Des. 280, 37–41 (2014)

    Article  Google Scholar 

  13. E. Beták et al., Radiochim. Acta 93, 311 (2005)

    Article  Google Scholar 

  14. I. Kumabe, K. Fukuda, J. Nucl. Sci. Technol. 24, 839 (1987)

    Article  Google Scholar 

  15. M. Belgaid, M. Asghar, Appl. Radiat. Isot. 49, 1497 (1998)

    Article  Google Scholar 

  16. E. Tel et al., J. Phys. G Nucl. Part Phys. 29, 2169–2177 (2003)

    Article  ADS  Google Scholar 

  17. H.L. Pai, D.G. Andrews, Can. J. Phys. 56, 944 (1978)

    Article  ADS  Google Scholar 

  18. H.L. Pai et al., Nucl. Phys. A 164, 526 (1971)

    Article  ADS  Google Scholar 

  19. C.H.M. Broeders et al., ALICE/ASH Manual, FZK 7183 (2006)

  20. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475–1492 (1983)

    Article  ADS  Google Scholar 

  21. M. Blann, Phys. Rev. Lett. 27, 337–340 (1971)

    Article  ADS  Google Scholar 

  22. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  23. Experimental Nuclear Reaction Data (EXFOR), http://www.nndc.bnl.gov/exfor/exfor.htm (2015)

  24. A. Hermanne et al., Nucl. Instrum. Methods Phys. Res. Sect. B 270, 106–115 (2012)

    Article  ADS  Google Scholar 

  25. H.I. West Jr et al., Report: U.C., Lawrence Rad.Lab. (Berkeley and Livermore) 3, 1(1993)

  26. W.H. Burgus et al., Phys. Rev. 95, 750 (1954)

    Article  ADS  Google Scholar 

  27. J. Steyn, B.R. Meyer, Appl. Radiat. Isot. 24, 369–372 (1973)

    Article  Google Scholar 

  28. H.F. Roehm, H. Muenzel, J. Inorg. Nucl. Chem. 34(6), 1773–1784 (1972)

    Article  Google Scholar 

  29. A.M.J. Paans et al., Appl. Radiat. Isot. 31(5), 267–273 (1980)

    Article  Google Scholar 

  30. H.I. WestJr et al., Phys. Rev. C 47, 248 (1993)

    Article  ADS  Google Scholar 

  31. A.M. LaGamma, S.J. Nassiff, Radiochim. Acta 19, 161 (1973)

    Google Scholar 

  32. H.H. Bissem et al., Phys. Rev. C 22, 1468 (1980)

    Article  ADS  Google Scholar 

  33. R.C. Mercader et al., Z. Phys. 255, 103 (1972)

    Article  ADS  Google Scholar 

  34. F. Ditroi et al., Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1963 (2011)

    Article  ADS  Google Scholar 

  35. H.F. Roehm et al., J. Inorg. Nucl. Chem. 32, 1413 (1970)

    Article  Google Scholar 

  36. O.H. Usher et al., Radiochim. Acta 24, 55 (1977)

    Google Scholar 

  37. J.H. Zaidi et al., Appl. Radiat. Isot. 34, 1425 (1983)

    Article  Google Scholar 

  38. M.L. Firouzbakht et al., Nucl. Instrum. Methods Phys. Res. Sect. B 79, 909–910 (1993)

    Article  ADS  Google Scholar 

  39. F.W. Pement, R.L. Wolke, Nucl. Phys. 86, 429 (1966)

    Article  Google Scholar 

  40. A. Hermanne et al., Nucl. Instrum. Methods Phys. Res. Sect. B 267, 727–736 (2009)

    Article  ADS  Google Scholar 

  41. H.I. West et al., Report: Brookhaven National Laboratory Reports 42382, 87 (1989)

  42. F. Tarkanyi et al., Appl. Radiat. Isot. 83, 25 (2014)

    Article  Google Scholar 

  43. T.M. Duc et al., C. R. Ser. B Phys. 266, 100 (1968)

    Google Scholar 

  44. F. Tarkanyi et al., Nucl. Instrum. Methods Phys. Res. Sect. B 266, 3529 (2008)

    Article  ADS  Google Scholar 

  45. A. Hermanne et al., Appl. Radiat. Isot. 69, 475 (2011)

    Article  Google Scholar 

  46. S. Takacs et al., Appl. Radiat. Isot. 268, 3443 (2010)

    Google Scholar 

  47. A. Hermanne et al., Nucl. Instrum. Methods Phys. Res. Sect. B 267, 3293–3301 (2009)

    Article  ADS  Google Scholar 

  48. I. DeBetancourt, S.J. Nassiff, Radiochim. Acta 12, 206 (1969)

    Google Scholar 

  49. T. Zhenlan et al., Chin. J. Nucl. Phys. 3, 242 (1981)

    Google Scholar 

  50. N.S. Ishioka et al., J. Nucl. Sci. Technol. 2, 1334 (2002)

    Article  Google Scholar 

  51. A.A. Kulko et al., Phys. Part. Nucl. Lett. 9, 502 (2012)

    Article  Google Scholar 

  52. F. Tarkanyi et al., Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1389 (2011)

    Article  ADS  Google Scholar 

  53. A. Chevarier et al., J. Phys. 32, 483 (1971)

    Article  Google Scholar 

  54. S. Mukhammedov, E. Pardayev, Izv. Akad. Nauk. UzSSSR Ser. Fiz.-Mat. 5, 81 (1985)

    Google Scholar 

  55. J. RamaRao et al., Nucl. Phys. A 448, 365 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yiğit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiğit, M., Tel, E. A Systematic Study for Cross Sections on (d, 2n) Nuclear Reactions Between 11.57 and 18.91 MeV. J Fusion Energ 35, 585–590 (2016). https://doi.org/10.1007/s10894-016-0066-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0066-1

Keywords

Navigation