Skip to main content

Advertisement

Log in

Cross Section Analysis for Neutron and Proton Induced Reactions on 55Mn Material

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Nuclear data on structural materials are an important tool in the safe and efficient design of nuclear fusion reactors. Manganese is an important material because of low activation property for fusion reactors. Thus, the manganese metal is commonly used as a key component of many important alloys. And also, it is considered as the shielding materials for nuclear fusion reactor. In the present paper, the excitation functions of neutron and proton induced reactions on fusion structural material Manganese have been calculated by using Hybrid, Geometry Dependent Hybrid and Weisskopf Ewing models. In addition, the different nuclear level density models were tested such as Fermi Gas model with an energy independent level density parameter, and Fermi Gas model of Ignatyuk, Smirenkin, Tishin with an energy dependent level density parameter, and Superfluid nuclear model, and Kataria–Ramamurthy Fermi Gas model. The obtained theoretical cross section calculations in the framework of these nuclear models have been compared with the each other and, the experimental data and TENDL-2014 library. Finally, it seemed that the nuclear cross section calculations are quite sensitive to level densities for nucleon induced reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.E. Bloom et al., J. Nucl. Mater. 329–333, 12–19 (2004)

    Article  Google Scholar 

  2. M. Yiğit et al., J. Fusion Energ. 32, 317–321 (2013)

    Article  ADS  Google Scholar 

  3. Y. Zhang et al., Rad. Phys. Chem. 81, 1563–1567 (2012)

    Article  ADS  Google Scholar 

  4. M. Yiğit et al., J. Fusion Energ. 32(3), 362–370 (2013)

    Article  ADS  Google Scholar 

  5. E. Tel et al., J. Fusion Energ. 32(5), 531–535 (2013)

    Article  ADS  Google Scholar 

  6. H. Özdoğan et al., J. Fusion Energ. 34, 379–385 (2015)

    Article  Google Scholar 

  7. A.J. Koning et al., Nucl. Phys. A 810, 13–76 (2008)

    Article  ADS  Google Scholar 

  8. C.H.M. Broeders et al., ALICE/ASH manual, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  9. A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  10. A.V. Ignatyuk et al., Yadernaja Fizika 29, 875 (1979)

    Google Scholar 

  11. S.K. Kataria et al., Nucl. Instrum. Methods Phys. Res. Sect. A 288, 585–588 (1990)

    Article  ADS  Google Scholar 

  12. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  13. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475–1492 (1983)

    Article  ADS  Google Scholar 

  14. M. Blann, Phys. Rev. Lett. 28, 757–759 (1972)

    Article  ADS  Google Scholar 

  15. M. Blann, Phys. Rev. Lett. 27, 337–340 (1971)

    Article  ADS  Google Scholar 

  16. M. Blann, ALICE–91; RSIC Code Package PSR–146 (Lawrence Livermore National Laboratory, California, 1991)

    Google Scholar 

  17. Y. Uwamino et al., Nucl. Sci. Eng. 111, 391 (1992)

    Google Scholar 

  18. A. J. Koning et al., TALYS-based evaluated nuclear data library (2014) ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.html

  19. S. Lulic et al., Nucl. Phys. A 154(2), 273–282 (1970)

    Article  ADS  Google Scholar 

  20. E.T. Bramlitt, R.W. Fink, Phys. Rev. 131, 2649 (1963)

    Article  ADS  Google Scholar 

  21. M. Diksic et al., J. Inorg. Nucl. Chem. 36, 477 (1974)

    Article  Google Scholar 

  22. E. Frevert, Acta Phys. Austriaca 20, 304 (1965)

    Google Scholar 

  23. E.T. Bramlitt et al., Phys. Rev. 125, 297 (1962)

    Article  ADS  Google Scholar 

  24. T.S. Soewarsono et al., JAERI–M–92 Reports 027, 354 (1992)

  25. K. Eskola, Ann. Acad. Sci. Fenn. Ser. A6. Physica 261, 7 (1967)

    Google Scholar 

  26. G.F. Steyn et al., Appl. Radiat. Isot. 41, 315–325 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Yiğit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiğit, M. Cross Section Analysis for Neutron and Proton Induced Reactions on 55Mn Material. J Fusion Energ 34, 1392–1398 (2015). https://doi.org/10.1007/s10894-015-9978-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-015-9978-4

Keywords

Navigation