Skip to main content

Advertisement

Log in

The Role of Magnetized Liner Inertial Fusion as a Pathway to Fusion Energy

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

We discuss the possible impacts of a new magnetized liner inertial fusion concept on magneto-inertial fusion approaches to fusion energy. Experiments in the last 1.5 years have already shown direct evidence of magnetic flux compression, a highly magnetized fusing fuel, significant compressional heating, a compressed cylindrical fusing plasma, and significant fusion yield. While these exciting results demonstrate several key principles behind magneto-inertial fusion, more work in the coming years will be needed to demonstrate that such targets can scale to ignition and high yield. We argue that justifying significant investment in pulsed inertial fusion energy beyond target development should require well-understood, significant fusion yields to be demonstrated in single-shot experiments. We also caution that even once target ideas and fusion power plants have been demonstrated, historical trends suggest it would still be decades before fusion could materially impact worldwide energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We note that oil and natural gas are grouped for clarity in this analysis, because the data show that natural gas is not replacing oil, but augmenting energy supply.

References

  1. M.M. Basko, A.J. Kemp, J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000)

    Article  ADS  Google Scholar 

  2. P.F. Knapp et al., Phys. Plasmas 22, 056306 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. G.A. Wurden, S.C. Hsu, T.P. Intrator et al., J. Fusion Energ. (2015). doi:10.1007/s10894-015-0038-x

    Google Scholar 

  4. S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)

    Article  ADS  Google Scholar 

  5. S.A. Slutz, R.A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)

    Article  ADS  Google Scholar 

  6. A.B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)

    Article  ADS  Google Scholar 

  7. D.C. Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014)

    Article  ADS  Google Scholar 

  8. P.K. Rambo et al., Appl. Opt. 44, 2421 (2005)

    Article  ADS  Google Scholar 

  9. R.D. McBride, S.A. Slutz, Phys. Plasmas 22, 052708 (2015)

    Article  ADS  Google Scholar 

  10. M.R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)

    Article  ADS  Google Scholar 

  11. P.F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014)

    Article  ADS  Google Scholar 

  12. M.R. Gomez et al., Phys. Plasmas 22, 056306 (2015)

    Article  ADS  Google Scholar 

  13. S.B. Hansen et al., Phys. Plasmas 22, 056313 (2015)

    Article  ADS  Google Scholar 

  14. D.B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)

    Article  ADS  Google Scholar 

  15. D.B. Sinars et al., Phys. Plasmas 18, 056301 (2011)

    Article  ADS  Google Scholar 

  16. R.D. McBride et al., Phys. Rev. Lett. 109, 135004 (2012)

    Article  ADS  Google Scholar 

  17. R.D. McBride et al., Phys. Plasmas 20, 056309 (2013)

    Article  ADS  Google Scholar 

  18. T.J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)

    Article  ADS  Google Scholar 

  19. T.J. Awe et al., Phys. Plasmas 21, 056303 (2014)

    Article  ADS  Google Scholar 

  20. K.J. Peterson et al., Phys. Plasmas 19, 092701 (2012)

    Article  ADS  Google Scholar 

  21. K.J. Peterson et al., Phys. Plasmas 20, 056305 (2013)

    Article  ADS  Google Scholar 

  22. K.J. Peterson et al., Phys. Rev. Lett. 112, 135002 (2014)

    Article  ADS  Google Scholar 

  23. D.D. Ryutov, M.E. Cuneo, M.C. Herrmann, D.B. Sinars, S.A. Slutz, Phys. Plasmas 19, 062706 (2012)

    Article  ADS  Google Scholar 

  24. A.L. Velikovich, J.L. Giuliani, S.T. Zalesak, Phys. Plasmas 22, 042702 (2015)

    Article  ADS  Google Scholar 

  25. P.Y. Chang et al., Phys. Rev. Lett. 107, 035006 (2011)

    Article  ADS  Google Scholar 

  26. M.E. Cuneo, M.C. Herrmann, D.B. Sinars et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)

    Article  ADS  Google Scholar 

  27. C.A. Coverdale et al., Phys. Plasmas 14, 022706 (2007)

    Article  ADS  Google Scholar 

  28. S.A. Slutz, C.L. Olson, P. Peterson, Phys. Plasmas 10, 429 (2003)

    Article  ADS  Google Scholar 

  29. C.L. Olson, G. Rochau, S. Slutz et al., Fusion Sci. Technol. 47, 633 (2005)

    Google Scholar 

  30. V. Smil, Creating the Twentieth Century (Oxford University Press, Oxford, 2005)

    Book  Google Scholar 

  31. V. Smil, Transforming the Twentieth Century (Oxford University Press, Oxford, 2006)

    Google Scholar 

  32. V. Smil, Energy at the Crossroads (The MIT Press, Cambridge, 2003)

    Google Scholar 

  33. V. Smil, Energy Transitions: History, Requirements, Prospects, (Praeger Press, Santa Barbara, 2010)

    Google Scholar 

  34. U.S. Energy Information Agency. http://www.eia.gov/

  35. J.C. Fischer, R.H. Pry, Technol. Forecast. Soc. Change 3, 75 (1971)

    Article  Google Scholar 

  36. C. Marchetti, Technol. Forecast. Soc. Change 10, 345 (1977)

    Article  Google Scholar 

  37. D.J.C. MacKay, Sustainable Energy-Without the Hot Air (UIT Cambridge Ltd., Cambridge, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Sinars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinars, D.B., Campbell, E.M., Cuneo, M.E. et al. The Role of Magnetized Liner Inertial Fusion as a Pathway to Fusion Energy. J Fusion Energ 35, 78–84 (2016). https://doi.org/10.1007/s10894-015-0023-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-015-0023-4

Keywords

Navigation