Skip to main content
Log in

Ergodic Magnetic Limiter with Barrier

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

A barrier is produced to radial diffusion of chaotic field lines and consequently increasing the particles confinement time. The chaotic layer near the plasma edge is created by perturbed Hamiltonian (of order ε) of an ergodic magnetic limiter (EML). Adding a control term of order ε 2 to this perturbed Hamiltonian revives invariant tori acting as barriers against plasma particles diffusion. The location of the barrier could be chosen in the chaotic zone of EML at a given place near the edge of plasma column. The chaotic behavior of the magnetic field lines around the barrier is studied by utilizing the maximal Lyapunov exponent, average square displacement (diffusion) and invariant manifolds. The effect of changing the number of EML rings on the barrier is investigated. A barrier is also generated by considering special modes in the Fourier expansion of the perturbed Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Boozer, Rev. Mod. Phys. 76, 1071 (2004)

    Article  ADS  Google Scholar 

  2. R. Balescu, Aspects of anomalous transport in plasmas (Taylor and Francis, London, 2005)

    Book  Google Scholar 

  3. W. Horton, Rev. Mod. Phys. 71, 735 (1999)

    Article  ADS  Google Scholar 

  4. A.F. Marcus, T. Kroetz, M. Roberto, I.L. Caldas, E.C. da Silva, R.L. Viana, Z.O. Guimares-Filho, Nucl. Fusion 48, 024018 (2008)

    Article  ADS  Google Scholar 

  5. M.W. Jakubowski et al., Phys. Rev. Lett. 96, 35004 (2006)

    Article  ADS  Google Scholar 

  6. T.E. Evans et al., J. Nucl. Mater. 337, 691 (2005)

    Article  ADS  Google Scholar 

  7. S.C. McCool et al., Nucl. Fusion 29, 547 (1989)

    Article  Google Scholar 

  8. T.E. Evans et al., Nature Phys. 2, 419 (2006)

    Article  ADS  Google Scholar 

  9. T.E. Evans et al., Nucl. Fusion 45, 595 (2005)

    Article  ADS  Google Scholar 

  10. T.E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004)

    Article  ADS  Google Scholar 

  11. J.R. Cary, J.D. Hanson, Phys. Fluids 29, 2464 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J.D. Hanson, Nucl. Fusion 34, 441 (1994)

    Article  ADS  Google Scholar 

  13. S.R. Hudson, R.L. Dewar, Phys. Lett. A 226, 85 (1997)

    Article  ADS  Google Scholar 

  14. S.R. Hudson, R.L. Dewar, Phys. Lett. A 247, 246 (1998)

    Article  ADS  Google Scholar 

  15. P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Institure of Physics Publishing, Bristol, 2000)

    Book  Google Scholar 

  16. R. Parker, G. Janeschitz, H.D. Pacher, D.E. Post, S. Chiocchio, G. Federici, P. Ladd, J. Nucl. Mater. 241, 241–243 (1997)

    Google Scholar 

  17. R.C. Wolf, Plasma Phys. Control. Fusion 45, R1–R91 (2003)

    Article  ADS  Google Scholar 

  18. K.H. Finken, T.E. Evans, D. Reiter, K.H. Spatschek, W. Suttrop, Nucl. Fusion 48, 020201 (2008)

    Article  ADS  Google Scholar 

  19. F.M. Levinton et al., Phys. Rev. Lett. 75, 4417 (1995)

    Article  ADS  Google Scholar 

  20. E.J. Strait et al., Phys. Rev. Lett. 75, 4421 (1995)

    Article  ADS  Google Scholar 

  21. F.A. Marcus, I.L. Caldas, Z.O. Guimaraes-Filho, P.J. Morrison, W. Horton, Y.K. Kuznetsov, I.C. Nascimento, Phys. Plasma 15, 112304 (2008)

    Article  ADS  Google Scholar 

  22. K.H. Spatschek, Plasma Phys. Control. Fusion 50, 124027 (2008)

    Article  ADS  Google Scholar 

  23. T. Kroetz, M. Roberto, E.C. da Silva, I.L. Caldas, R.L. Viana, Phys. Plasmas 15, 092310 (2008)

    Article  ADS  Google Scholar 

  24. T.J. Martin, J.B. Taylor, Plasma Phys. Control. Fusion 26, 321 (1984)

    Article  ADS  Google Scholar 

  25. K. Ullman, I.L. Caldas, Chaos. Solit. & Fract. 11, 2129 (2000)

    Article  Google Scholar 

  26. E.C. da Silva, I.L. Caldas, R.L. Viana, Phys. Plasmas 8, 2855 (2001)

    Article  ADS  Google Scholar 

  27. E.C. da Silva, I.L. Caldas, L.V. Ricardo, IEEE Trans. Plasma Sci. 29(4), 617 (2001)

    Article  ADS  Google Scholar 

  28. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, 2nd edn. (Springer, New York, 1992)

    MATH  Google Scholar 

  29. J.D. Meiss, Rev. Mod. Phys. 64, 795 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A.R. Sohrabi, S.M. Jazayeri, M. Mollabashi, J. Plasma Phys. 76, 777 (2010)

    Article  ADS  Google Scholar 

  31. G. Ciraolo, C. Chandre, R. Lima, M. Vittot, M. Pettini, C. Figarella, P. Ghendrih, J. Phys. A: Math. Gen. 37, 3589 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. G. Ciraolo et al., Phys. Rev. E 69 (2004) 056213-1-16

  33. M. Vittot, J. Phys. A: Math. Gen. 37, 6337 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. C. Chandre, G. Ciraolo, F. Doveil, R. Lima, A. Macor and M.Vittot, Phys. Rev. Lett. 94 (2005) 074101-1-4

    Google Scholar 

  35. C. Chandre et al., Nucl. Fusion 46, 33 (2006)

    Article  ADS  Google Scholar 

  36. M. Y. Kucinski, I. L. Caldas, Naturforsch Z 42a (1987) 1124

  37. M.Y. Kucinski, I.L. Caldas, L.H.A. Monteiro, V. Okano, J. Plasma Phys. 44, 303 (1990)

    Article  ADS  Google Scholar 

  38. J. Aguirre, R.L. Viana, M.A.F. Sanjuan, Rev. Mod. Phys. 81, 333 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Jazayeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jazayeri, S.M., Sohrabi, A.R. Ergodic Magnetic Limiter with Barrier. J Fusion Energ 32, 71–77 (2013). https://doi.org/10.1007/s10894-012-9528-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9528-2

Keywords

Navigation