Skip to main content

Advertisement

Log in

Isentrope Parameter Effect in the Compression Process of the Fusion Advanced Fuel

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In inertial confinement fusion, Fermi degeneracy plays an important role in reducing the cost of driver energy. In this research, based on recent progresses in the laser electron accelerators research, we have physically designed a D/3 He target and examine the isentropic parameter of a D/3 He fuel to achieve the goal of gains of order 500. The design target significantly depends on the isentrope parameter and the pressure of the D/3 He fuel. In during the compression, If the D/3 He fuel stays in the degeneracy state, the compression energy is smaller than the ignition energy for the same amount of fuel. The energy requirement to compress a D/3 He fuel with density 2.9 × 104 g/cm3 is 4.2 × 107 J/g. Also, the driver energy needed to achieve these gains is estimated to be 1000 MJ when the coupling efficiency is 10 % and isentropic parameter is 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Son, N.J. Fisch, Phys. Lett. A 356, 73 (2006)

    ADS  Google Scholar 

  2. T. Ohmura, M. Katsube, Y. Nakao, T. Johzaki, K. Mima, M. Ohta, Journal of Physics. Conference Series 112, 022068 (2008)

    Article  ADS  Google Scholar 

  3. T. Honda, Y. Nakao, Y. Honda, K. Kudo, H. Nakashima, Nucl. Fus. 31, 851 (1991)

    Article  Google Scholar 

  4. H. C. Wu, T. Tajima, D. Habs, A.W. Chaoand, J. Meyer-ter-Vehn, Physical Review Spectial Topics—Accelerators and Beams 13, 101303-1 (2010)

    ADS  Google Scholar 

  5. J. J. Duderstadt, G. A. Moses, Inertial Confinement Fusion, Chap. 3 (New York, 1892).

  6. H.S. Bosch, G.M. Hale, Nucl. Fus. 32, 624 (1992)

    Article  Google Scholar 

  7. T. Honda, Y. Nakao, Y. Honda, K. Kudo, H. Nakashima, Nucl. Fus. 31, 851 (1991)

    Article  Google Scholar 

  8. P.T. Len, S. Eliezer, J.M. Martnez-Val, Phys. Lett. A 343, 182 (2005)

    ADS  Google Scholar 

  9. S. Ichimaru, Rev. Mod. Phys. 65, 259 (1993)

    Article  ADS  Google Scholar 

  10. S. Ichimaru, Statistical Plasma Physics (Addison-Wesley, Reading, 1991)

    Google Scholar 

  11. S. Pfalzner, An Introduction to Inertial Confinement Fusion, Chap. 3 (CRC Press, Boca Raton, 2006)

  12. S.X. Hu, B. Militzer, V.N. Goncharov, S. Skupsky, Phys. Rev. Lett. 104, 235003 (2010)

    Article  ADS  Google Scholar 

  13. A.R. Piriz, N.R. Arista, Phys. Rev. A 35 (1987)

  14. J. McDougall, E.C. Stoner, Philos. Trans. R. Soc. Lond. Ser. A 237, 67 (1938)

  15. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, vol 332 (Clarendon Press, Oxford, 2004)

  16. R.M. More, G. Velarde, Y. Ronen, J.M. Martnez-Val (Eds.), Nuclear Fusion by Inertial Confinement, Chap. 6 (CRC Press, Boca Raton, 1993)

  17. L.J. Spitzer, Jr., Physics of Fully Ionized plasmas, 2nd edn (Wiley Interscience, New York 1962)

    Google Scholar 

  18. R. Paul Drake, High Energy Density Physics, Chap. 3 (Springer, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Khodadadi Azadboni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdavi, M., Azadboni, F.K. Isentrope Parameter Effect in the Compression Process of the Fusion Advanced Fuel. J Fusion Energ 32, 88–96 (2013). https://doi.org/10.1007/s10894-012-9527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9527-3

Keywords

Navigation