The Journal of Economic Inequality

, Volume 10, Issue 2, pp 267-297

First online:

Small area estimation-based prediction methods to track poverty: validation and applications

  • Luc ChristiaensenAffiliated withDevelopment Economics Research Group, World Bank Email author 
  • , Peter LanjouwAffiliated withDevelopment Economics Research Group, World Bank
  • , Jill LuotoAffiliated withRand Corporation
  • , David StifelAffiliated withLafayette College

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Tracking poverty is predicated on the availability of comparable consumption data and reliable price deflators. However, regular series of strictly comparable data are only rarely available. Price deflators are also often missing or disputed. In response, poverty prediction methods that track consumption correlates as opposed to consumption itself have been developed. These methods typically assume that the estimated relation between consumption and its predictors is stable over time—assumptions that cannot usually be tested directly. This study analyzes the performance of poverty prediction models based on small area estimation (SAE) techniques. Predicted poverty estimates are compared with directly observed levels in two country settings where data comparability over time is not a problem. Prediction models that employ either non-staple food or non-food expenditures or a full set of assets as predictors are found to yield poverty estimates that match observed poverty well. This offers some support to the use of such methods to approximate the evolution of poverty. Two further country examples illustrate how an application of the method employing models based on household assets can help to adjudicate between alternative price deflators.


Consumption prediction Price deflator Poverty dynamics Small area estimation China Kenya Russia Vietnam

JEL Classification

D12 D63 I32