Skip to main content
Log in

Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals to receptors on sensory neurons. We identified and cloned 24 CSP genes to better understand the physiological function of CSPs in Helicoverpa armigera. Quantitative real-time polymerase chain reaction assays indicate that CSP genes are ubiquitously expressed in adult H. armigera tissues. Broad expression patterns in adult tissues suggest that CSPs are involved in a diverse range of cellular processes, including chemosensation as well as other functions not related to chemosensation. The H. armigera CSPs that were highly transcribed in sensory organs or pheromone glands (HarmCSPs 6, 9, 18, 19), were recombinantly expressed in bacteria to explore their function. Fluorescent competitive binding assays were used to measure the binding affinities of these CSPs against 85 plant volatiles and 4 pheromone components. HarmCSP6 displays high binding affinity for pheromone components, whereas the other three proteins do not show affinities for any of the compounds tested. HarmCSP6 is expressed in numerous cells located in or close to long sensilla trichodea on the antennae of both males and females. These results suggest that HarmCSP6 may be involved in transporting female sex pheromones in H. armigera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CSP:

Chemosensory protein

OBP:

odorant-binding protein

OS-D:

olfactory specific protein-D

qRT-PCR:

quantitative real-time polymerase chain reaction

Nr:

Non-redundant protein sequences database

1-NPN:

1-N-phenylnaphthylamine

Ki:

Dissociation constant

PBP:

Pheromone binding protein

References

  • Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–54

    Article  CAS  PubMed  Google Scholar 

  • Ban L, Scaloni A, Brandazza A, Angeli S, Zhang L, Yan Y, Pelosi P (2003) Chemosensory proteins of Locusta migratoria. Insect Molec Biol 12:125–34

    Article  CAS  Google Scholar 

  • Campanacci V, Lartigue A, Hallberg BM, Jones TA, Giudici-Orticoni MT, Tegoni M, Cambillau C (2003) Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc Natl Acad Sci U S A 100:5069–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll MJ, Schmelz EA, Meagher RL, Teal PE (2006) Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J Chem Ecol 32:1911–24

    Article  CAS  PubMed  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–71

    Article  CAS  PubMed  Google Scholar 

  • Forêt S, Wanner KW, Maleszka R (2007) Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem Molec Biol 37:19–28

    Article  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Lin Y, Xia QY, Xiang ZH (2007) Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem Mol Biol 37:266–77

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Luo Q, Rizwan-Ul-Haq M, Hu MY (2012) Cloning and characterization of three chemosensory proteins from Spodoptera exigua and effects of gene silencing on female survival and reproduction. Bull Entomol Res:1–10

  • González D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassill A, Renthal R (2009) The major antennal chemosensory protein of red imported fire ant workers. Insect Molec Biol 18:395–404

    Article  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–8

    Article  CAS  PubMed  Google Scholar 

  • Grater F, de Groot BL, Jiang H, Grubmuller H (2006) Ligand-release pathways in the pheromone-binding protein of Bombyx mori. Structure 14:1567–76

    Article  PubMed  Google Scholar 

  • Gu SH, Wang SY, Zhang XY, Ji P, Liu JT, Wang GR, Wu KM, Guo YY, Zhou JJ, Zhang YJ (2012) Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS One 7:e42871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L (2011) CSP and Takeout Genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genet 7:e1001291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo H, Huang LQ, Pelosi P, Wang CZ (2012) Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components. Insect Biochem Molec Biol

  • Itoh S, Kuwahara S, Hasegawa M, Kodama O (2002) Synthesis of the (17R)- and (17S)-isomers of volicitin, an elicitor of plant volatiles contained in the oral secretion of the beet armyworm. Biosci Biotechnol Biochem 66:1591–6

    Article  CAS  PubMed  Google Scholar 

  • Jacquin-Joly E, Vogt RG, Francois MC, Nagnan-Le MP (2001) Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Senses 26:833–44

    Article  CAS  PubMed  Google Scholar 

  • Kitabayashi AN, Arai T, Kubo T, Natori S (1998) Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochem Mol Biol 28:785–90

    Article  CAS  PubMed  Google Scholar 

  • Kulmuni J, Havukainen H (2013) Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS One 8, e63688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kulmuni J, Wurm Y, Pamilo P (2013) Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity (Edinb) 110:538–47

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–8

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2012) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–463

    Article  PubMed  Google Scholar 

  • Lee JK, Strausfeld NJ (1990) Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth Manduca sexta. J Neurocytology 19:519–538

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–8

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nuc Acids Res 39(Web Server issue):W475-8

  • Li ZQ, Zhang S, Luo JY, Cui JJ, Ma Y, Dong SL (2013a) Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J Insect Physiol 59:263–272

    Article  CAS  PubMed  Google Scholar 

  • Li ZQ, Zhang S, Ma Y, Luo JY, Wang CY, Lv LM, Dong SL, Cui JJ (2013b) First transcriptome and digital gene expression analysis in Neuroptera with an emphasis on chemoreception genes in Chrysopa pallens (Rambur). PLoS One 8:e67151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Luo Q, Zhong G, Rizwan-Ul-Haq M, Hu M (2010) Molecular characterization and expression pattern of four chemosensory proteins from diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Biochem 148:189–200

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Liu Y, Guo M, Cao D, Dong S, Wang G (2014) Narrow tuning of an odorant receptor to plant volatiles in Spodoptera exigua (Hubner). Insect Mol Biol 23:487–496

    Article  CAS  PubMed  Google Scholar 

  • Maleszka J, Foret S, Saint R, Maleszka R (2007) RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol 217:189–96

    Article  CAS  PubMed  Google Scholar 

  • McDonald MJ, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107:567–78

    Article  CAS  PubMed  Google Scholar 

  • Mosbah A, Campanacci V, Lartigue A, Tegoni M, Cambillau C, Darbon H (2003) Solution structure of a chemosensory protein from the moth Mamestra brassicae. Biochem J 369(Pt 1):39–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, Francois MC, Ramachandran S, Maida R, Steinbrecht RA (2000) Chemosensory proteins from the proboscis of Mamestra brassicae. Chem Senses 25:541–53

    Article  CAS  PubMed  Google Scholar 

  • Oduol F, Xu J, Niare O, Natarajan R, Vernick KD (2000) Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci U S A 97:11397–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pelosi P, Calvello M, Ban L (2005) Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem Senses 30(Suppl 1):i291–2

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pikielny CW, Hasan G, Rouyer F, Rosbash M (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49

    Article  CAS  PubMed  Google Scholar 

  • Qiao HL, Deng PY, Li DD, Chen M, Jiao ZJ, Liu ZC, Zhang YZ, Kan YC (2013) Expression analysis and binding experiments of chemosensory proteins indicate multiple roles in Bombyx mori. J Insect Physiol 59:667–75

    Article  CAS  PubMed  Google Scholar 

  • Rafaeli A, Bober R, Becker L, Choi MY, Fuerst EJ, Jurenka R (2007) Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae). Insect Mol Biol 16:287–93

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Martos R, Sears CR, Todres EZ, Walden KK, Nardi JB (1999) Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol 8:501–18

    Article  CAS  PubMed  Google Scholar 

  • Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M (2002) Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111:687–701

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomaselli S, Crescenzi O, Sanfelice D, Ab E, Wechselberger R, Angeli S, Scaloni A, Boelens R, Tancredi T, Pelosi P et al (2006) Solution structure of a chemosensory protein from the desert locust Schistocerca gregaria. Biochemistry 45:10606–13

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. Insect pheromone biochemistry and molecular biology: the biosynthesis and detection of pheromones and plant volatiles. Elsevier, London, pp 391–445

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–3

    Article  CAS  PubMed  Google Scholar 

  • Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E (2004) Analysis of the insect os-d-like gene family. J Chem Ecol 30:889–911

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei Y, Brandazza A, Pelosi P (2008) Binding of polycyclic aromatic hydrocarbons to mutants of odorant-binding protein: a first step towards biosensors for environmental monitoring. Biochim Biophys Acta 1784:666–71

    Article  CAS  PubMed  Google Scholar 

  • Yan ZG, Yan YH, Wang CZ (2005) Attractiveness of tobacco volatiles induced by Helicoverpa armigera and Helicoverpa assulta to Campoletis chlorideae. Chin Sci Bull 50:1334–1341

    Article  CAS  Google Scholar 

  • Yu HL, Zhang YJ, Pan WL, Guo YY, Gao XW (2007) Identification of volatiles from field cotton plant under different induction treatments. Ying Yong Sheng Tai Xue Bao 18:859–64

    CAS  PubMed  Google Scholar 

  • Zhang TT, Mei XD, Feng JN, Berg BG, Zhang YJ, Guo YY (2012) Characterization of three pheromone-binding proteins (PBPs) of Helicoverpa armigera (Hubner) and their binding properties. J Insect Physiol 58:941–948

    Article  CAS  PubMed  Google Scholar 

  • Zhang TT, Wang WX, Zhang ZD, Zhang YJ, Guo YY (2013a) Functional characteristics of a novel chemosensory protein in the cotton bollworm Helicoverpa armigera (hubner). J Integ Agric 12:853–861

    Article  Google Scholar 

  • Zhang YN, Jin JY, Jin R, Xia YH, Zhou JJ, Deng JY, Dong SL (2013b) Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS One 8, e69715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YN, Ye ZF, Yang K, Dong SL (2014) Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene 536:279–86

    Article  CAS  PubMed  Google Scholar 

  • Zhou JJ (2010) Odorant-binding proteins in insects. Vitamins and hormones. 2010/09/14 ed. p 241–72

  • Zhou JJ, Kan Y, Antoniw J, Pickett JA, Field LM (2006) Genome and EST analyses and expression of a gene family with putative functions in insect chemoreception. Chem Senses 31:453–65

    Article  CAS  PubMed  Google Scholar 

  • Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori Odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–45

    Article  CAS  PubMed  Google Scholar 

  • Zhou JJ, Vieira FG, He X-L, Smadja C, Liu R, Rozas J, Field LM (2010) Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid (Acyrthosiphon pisum). Insect Mol Biol 19(s2):113–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Nai-Yong Liu (Nanjing Agricultural University, China) for help in 3-D structural modeling, and professer Guirong Wang and Mengbo Guo for help in the in situ hybridization experiments. This study was funded by research grants from the Ministry of Agriculture of China (2014ZX08011-002) and the National Natural Science Foundation of China (31071978).

Competing Interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Jie Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 92 kb)

ESM 2

(XLSX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZQ., Zhang, S., Luo, JY. et al. Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera . J Chem Ecol 41, 473–485 (2015). https://doi.org/10.1007/s10886-015-0574-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0574-x

Keywords

Navigation