Skip to main content
Log in

Photoperiod-Induced Geographic Variation in Plant Defense Chemistry

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Spatial variation in chemical defense of plants can be caused by genetic, biotic, and abiotic factors. For example, many plants exhibit a latitudinal cline in chemical defense, potentially due to latitudinal variation in abiotic environmental factors such as the light regime during the growing season. In the worldwide distributed Plantago lanceolata, the levels of deterrent iridoid glycosides (IGs), aucubin and catalpol, vary geographically, including latitudinally. To examine whether latitudinal variation in photoperiod can explain part of this geographic variation, plants from the Netherlands and Finland were exposed to two different photoperiods, simulating the Dutch (middle European) and Finnish (northern European) light period during the growing season. The experiment showed that although most variation in IG content was genetic, plants from both Dutch and Finnish origin produce relatively more catalpol under a northern European than under a middle European photoperiod. Our results confirm that latitudinal effects on photoperiod can contribute to geographic variation in plant defense chemistry, which should be considered when studying latitudinal clines in plant-enemy interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler LS, Schmitt J, Bowers MD (1995) Genetic-variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101:75–85

    Article  Google Scholar 

  • Alexander JM, van Kleunen M, Ghezzi R, Edwards PJ (2012) Different genetic clines in response to temperature across the native and introduced ranges of a global plant invader. J Ecol 100:771–781

    Article  Google Scholar 

  • Anderberg A, Anderberg A-L (2009) Svärtkampar, Plantago lanceolata L. http://linnaeus.nrm.se/flora/di/plantagina/plant/planlan.html. Accessed 21-5-2014

  • Barton KE (2008) Phenotypic plasticity in seedling defense strategies: compensatory growth and chemical induction. Oikos 117:917–925

    Article  Google Scholar 

  • Benjamini Y, Krieger A, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93:491–507

  • Biere A, Marak HB, van Damme JMM (2004) Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs? Oecologia 140:430–441

    Article  PubMed  Google Scholar 

  • Bowers MD (1983) The role of iridoid glycosides in host-plant specificity of checkerspot butterflies. J Chem Ecol 9:475–793

    Article  CAS  PubMed  Google Scholar 

  • Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, San Diego, pp 297–325

    Chapter  Google Scholar 

  • Bowers MD, Puttick GM (1988) Response of generalist and specialist insects to qualitative allelochemical variation. J Chem Ecol 14:319–334

    Article  CAS  Google Scholar 

  • Bowers MD, Stamp NE (1992) Chemical variation within and between individuals of Plantago lanceolata (Plantaginaceae). J Chem Ecol 18:985–995

    Article  CAS  PubMed  Google Scholar 

  • Bowers MD, Stamp NE (1993) Effects of plant-age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778–1791

    Article  Google Scholar 

  • Cavers PB, Bassett IJ, Crompton CW (1980) The biology of Canadian weeds. 47, Plantago lanceolata L. Can J Plant Sci 60:1269–1282

    Article  Google Scholar 

  • Coley PD, Aide TM (1991) Comparison of herbivory and plant defenses in temperate an tropical broad-leaved forest. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary and ecology in tropical and temperate regions. Wiley, New York, pp 25–49

    Google Scholar 

  • Damtoft S, Jensen SR, Nielsen BJ (1983) The biosynthesis of iridoid glucosides from 8-epi-deoxyloganic acid. Biochem Soc T 11:593–594

    CAS  Google Scholar 

  • Darrow K, Bowers MD (1997) Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochem Syst Ecol 25:1–11

    Article  CAS  Google Scholar 

  • de Deyn GB, Biere A, van der Putten WH, Wagenaar R, Klironomos JN (2009) Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia 160:433–442

    Article  PubMed  Google Scholar 

  • Dobzhansky T (1950) Evolution in the tropics. Am Sci 38:209–221

    Google Scholar 

  • Duff RB, Bacon JSD, Mundie CM, Farmer VC, Russell JD, Forrester AR (1965) Catalpol and methylcatalpol: naturally ocurring glycosides in Plantago and Buddleia species. Biochem J 96:1–5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1992) The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in Plantago: a test of the carbon/nutrient balance hypothesis. Am Nat 140:707–723

    Article  CAS  PubMed  Google Scholar 

  • Foggo A, HIggins S, Wargent JJ, Coleman RA (2007) Tri-trophic consequences of UV-B exposure: plants, herbivores and parasitoids. Oecologia 154:505–512

    Article  PubMed  Google Scholar 

  • Haeggström C-A, Haeggström E (2008) Ålands flora. Marienhamn, Finland

  • Hårdh JE, Persson AR, Lottosson L (1977) Quality of vegetables cultivated at different latitudes in Scandinavia. Acta Agric Scand 27:81–96

  • Harvey JA, Gols R, Wagenaar R, Bezemer TM (2007) Development of an insect herbivore and its pupal parasitoid reflect differences in direct plant defense. J Chem Ecol 33:1556–1569

    Article  CAS  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Ho C-K, Penning SC (2013) Preference and performance in plant-herbivore interactions across latitude—a study in U.S. Atlantic salt marshes. PLoS One 8:e59829

  • Jaakola L, Hohtola A (2010) Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ 33:1239–1247

    CAS  PubMed  Google Scholar 

  • Jarzomski CM, Stamp NE, Bowers MD (2000) Effects of plant phenology, nutrients and herbivory on growth and defensive chemistry of plantain, Plantago lanceolata. Oikos 88:371–379

    Article  CAS  Google Scholar 

  • Jones CG, Firn RD (1991) On the evolution of plant secondary chemical diversity. Phil T Roy Soc B 333:273–280

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. Chicago University Press, Chicago

    Book  Google Scholar 

  • Kennedy GG, Yamamoto RT, Dimock MB, William WG, Bordner J (1981) Effect of day length and light intensity on 2-tridecanone levels and resistance in Lycopersicon hirsuta to Manduca sexta. J Chem Ecol 7:707–716

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kim TN (2014) Plant damage and herbivore performance change with latitude for two old-field plant species, but rarely as predicted. Oikos 123: 886–896

  • Klockars GK, Bowers MD, Cooney B (1993) Leaf variation in iridoid glycoside content of Plantago lanceolata (Plantaginaceae) and oviposition of the buckeye, Junonia coenia (Nymphalidae). Chemoecology 4:72–78

    Article  CAS  Google Scholar 

  • Lampinen R, Lahti T (2013) Kasviatlas 2012. Helsingin Yliopisto, Helsinki

    Google Scholar 

  • Li Y, Yu D, Xu X, Xie Y (2005) Light intensity increases the suceptibility of Vallisneria natans to snail herbivory. Aquat Bot 81:265–275

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Princeton University Press, Princeton

    Google Scholar 

  • Marak HB, Biere A, van Damme JMM (2000) Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. J Evol Biol 13:985–996

    Article  CAS  Google Scholar 

  • Marak HB, Biere A, van Damme JMM (2002a) Systemic, genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L. in response to fungal infection by Diaporthe adunca (Rob.) Niessel. J Chem Ecol 28:2429–2448

    Article  CAS  PubMed  Google Scholar 

  • Marak HB, Biere A, van Damme JMM (2002b) Two herbivore-deterrent iridoid glycosides reduce the in-vitro growth of a specialist but not of a generalist pathogenic fungus of Plantago lanceolata L. Chemoecology 12:185–192

    Article  CAS  Google Scholar 

  • Moles AT (2013) Dogmatic is problematic: interpreting evidence of latitudinal gradients in herbivory and defense. Ideas Ecol Evol 6:1–4

    Google Scholar 

  • Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011a) Assesing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388. doi:10.1111/j.1365-2435.2010.01814.x

    Article  Google Scholar 

  • Moles AT et al (2011b) Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytol 191:777–788

    Article  PubMed  Google Scholar 

  • Nieminen M, Suomi J, van Nouhuys S, Sauri P, Riekkola ML (2003) Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J Chem Ecol 29:823–844

    Article  CAS  PubMed  Google Scholar 

  • Pankoke H, Müller C (2013) Impact of defoliation on the regrowth capacity and the shoot metabolite profile of Plantago lanceolata L. Plant Physiol Biochem 71:325–333

    Article  CAS  PubMed  Google Scholar 

  • Pereyra PC, Bowers MD (1988) Iridoid glycosides as oviposition stimulants for the buckeye butterfly, Junonia coenia (Nymphalidae). J Chem Ecol 14:917–928

    Article  CAS  Google Scholar 

  • Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2:278–288

    Article  Google Scholar 

  • Primack RB, Antonovics J (1982) Experimental ecological genetics in Plantago. VII Reproductive effort in populations of P. lanceolata L. Evolution 36:742–752

    Article  Google Scholar 

  • Quintero C, Bowers MD (2012) Changes in chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae). Oecologia 168:471–481

    Article  PubMed  Google Scholar 

  • Reudler JH, Biere A, Harvey JA, Van Nouhuys S (2011) Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J Chem Ecol 37:765–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reudler Talsma JH, Biere A, Harvey JA, van Nouhuys S (2008) Oviposition cues for a specialist butterfly: plant chemistry and size. J Chem Ecol 34:1202–1212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards LA, Dyer LA, Smilanich AM, Dodson CD (2010) Synergistic effects of amides from two piper species on generalist and specilaist herbivores. J Chem Ecol 36:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Richards LA, Lampert EC, Bowers MD, Dodson CD, Smilanich AM, Dyer LA (2012) Synergistic effects of iridoid glycosides on the survival, development and immune repsonse of a specilaist caterpillar, Junonia coenia (Nymphalidae). J Chem Ecol 38:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Roberts MR, Paul ND (2006) Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol 170:677–699

    Article  CAS  PubMed  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions. Annu Rev Ecol Evol Syst 40:245–269

    Article  Google Scholar 

  • Schmelzer GH, Gurib-Fakim A, Arroo RRJ, Bosch CH, de Ruyter A, Simmonds MSJ (2008) Medicinal plants 1 vol 11. Plant resources of tropical Africa. Backhuys Publishers, Wageningen

    Google Scholar 

  • Simms EL (1992) Costs of plant resistance to herbivory. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 392–425

    Google Scholar 

  • Stamp NE, Bowers MD (1994) Effects of cages, plant age and mechanical clipping on plantain chemistry. Oecologia 99:66–71

    Article  Google Scholar 

  • Van Alstyne KL, Dethier MN, Duggins DO (2001) Spatial patterns in macroalgal chemical defenses. In: Mcclintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, New York, pp 301–324

    Google Scholar 

  • van der Meijden R (1996) Heukels’ flora van Nederland, 22nd edn. Wolters-Noordhoff, Groningen

    Google Scholar 

  • WallisDeVries MF (2001) Habitat quality assessment and its role in the conservation of the butterfly Melitaea cinxia. Proc Exp Apll Ent 12:141–146

    Google Scholar 

  • Wilkens RT, Spoerke JM, Stamp NE (1996) Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology 77:247–258

    Article  Google Scholar 

  • Woods EC, Hastings AP, Turley NE, Heard SB, Agrawal AA (2012) Adaptive geographical clines in the growth and defence of a native plant. Ecol Monogr 82:149–198

    Article  Google Scholar 

  • Zangerl AR, Berenbaum MR (1993) Plant chemistry, insect adaptations to plant chemistry, and host plant utilization patterns. Ecology 74:47–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jimi Kirvesoja for help with the chemical analyses, Remieke Niermeyer and Annamien Koomen for collecting seeds in Ede, the Netherlands. We thank Sandra Varga, two anonymous reviewers and an editor for helpful comments on previous versions of this manuscript. This research was funded by the Academy of Finland grant 128508 to JHR. JAE acknowledges funding from the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelmer A. Elzinga.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 6741 kb)

ESM 2

(DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reudler, J.H., Elzinga, J.A. Photoperiod-Induced Geographic Variation in Plant Defense Chemistry. J Chem Ecol 41, 139–148 (2015). https://doi.org/10.1007/s10886-015-0550-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0550-5

Keywords

Navigation