Skip to main content
Log in

The Chemical Basis of Host-Plant Recognition in a Specialized Bee Pollinator

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many pollinators specialize on a few plants as food sources and rely on flower scents to recognize their hosts. However, the specific compounds mediating this recognition are mostly unknown. We investigated the chemical basis of host location/recognition in the Campanula-specialist bee Chelostoma rapunculi using chemical, electrophysiological, and behavioral approaches. Our findings show that Ca. trachelium flowers emit a weak scent consisting of both widespread and rare (i.e., spiroacetals) volatiles. In electroantennographic analyses, the antennae of bees responded to aliphatics, terpenes, aromatics, and spiroacetals; however, the bioassays revealed a more complex response picture. Spiroacetals attracted host-naive bees, whereas spiroacetals together with aliphatics and terpenes were used for host finding by host-experienced bees. On the intrafloral level, different flower parts of Ca. trachelium showed differences in the absolute and relative amounts of scent, including spiroacetals. Scent from pollen-presenting flower parts elicited more feeding responses in host-naive bees as compared to a scentless control, whereas host-experienced bees responded more to the nectar-presenting parts. Our study demonstrates the occurrence of learning (i.e., change in the bee’s innate chemical search-image) after bees gain foraging experience on host flowers. We conclude that highly specific floral volatiles play a key role in host-flower recognition by this pollen-specialist bee, and discuss our findings into the broader context of host-recognition in oligolectic bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, p 804

    Google Scholar 

  • Andrews ES, Theis N, Adler LS (2007) Pollinator and herbivore attraction to Curcubita floral volatiles. J Chem Ecol 33:1682–1691

    Article  PubMed  CAS  Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Ibarra F, Francke W (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc B 270:517–522

    Article  PubMed  CAS  Google Scholar 

  • Balao F, Herrera J, Talavera S, Dötterl S (2011) Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochemistry 72:601–609

    Article  PubMed  CAS  Google Scholar 

  • Bergström G, Tengö J, Reith W, Francke W (1982) Multicomponent mandibular gland secretions in three species of Andrena bees (Hym., Apoidea). Z Naturforsch C 37:1124–1129

    Google Scholar 

  • Blionis GJ, Vokou D (2001) Pollination ecology of Campanula species on Mt Olympos, Greece. Ecography 24:287–297

    Google Scholar 

  • Burger BV (2005) Mammalian semiochemicals. Top Curr Chem 240:231–278

    CAS  Google Scholar 

  • Burger H, Ayasse M, Häberlein CM, Schulz S, Dötterl S (2010a) Echium and Pontechium specific floral cues for host-plant recognition by the oligolectic bee Hoplitis adunca. S Afr J Bot 76:788–795

    Article  CAS  Google Scholar 

  • Burger H, Dötterl S, Ayasse M (2010b) Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct Ecol 24:1234–1240

    Article  Google Scholar 

  • Burger H, Dötterl S, Häberlein C, Schulz S, Ayasse M (2012) An arthropod deterrent attracts specialised bees to their host plants. Oecologia 168:727–736

    Article  PubMed  Google Scholar 

  • Cane JH, Sipes S (2006) Characterizing floral specialization by bees: analytical methods and revised lexicon for oligolecty. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 99–121

    Google Scholar 

  • Chen C, Song Q, Proffit M, Bessiíre JM, Li Z, Hossaert-Mckey M (2009) Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct Ecol 23:941–950

    Article  Google Scholar 

  • Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435

    Article  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E, Plymouth, p 91

    Google Scholar 

  • Dobson HEM (1987) Role of flower and pollen aromas in host-plant recognition by solitary bees. Oecologia 72:618–623

    Article  Google Scholar 

  • Dobson HEM (2006) Relationship between floral frangrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 147–198

    Chapter  Google Scholar 

  • Dobson HEM, Bergström G (2000) The ecology of pollen odors. Plant Syst Evol 222:63–87

    Article  CAS  Google Scholar 

  • Dötterl S, Füssel U, Jürgens A, Aas G (2005a) 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J Chem Ecol 31:2993–2998

    Article  PubMed  Google Scholar 

  • Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109

    Article  Google Scholar 

  • Dötterl S, Jürgens A, Seifert K, Laube T, Weißbecker B, Schütz S (2006) Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718

    Article  PubMed  Google Scholar 

  • Dötterl S, Milchreit K, Schäffler I (2011) Behavioural plasticity and sex differences in host finding of a specialized bee species. J Comp Physiol A 197:1119–1126

    Article  Google Scholar 

  • Dötterl S, Schäffler I (2007) Flower scent of floral oil-producing Lysimachia punctata as attractant for the oil-bee Macropis fulvipes. J Chem Ecol 33:441–445

    Article  PubMed  Google Scholar 

  • Dötterl S, Vereecken JN (2010) The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 88:668–697

    Article  Google Scholar 

  • Dötterl S, Wolfe LM, Jürgens A (2005b) Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213

    Article  PubMed  Google Scholar 

  • Feulner M, Schuhwerk F, Dötterl S (2009) Floral scent analysis in Hieracium subgenus Pilosella and its taxonomical implications. Flora 204:495–505

    Article  Google Scholar 

  • Fletcher MT, Jacobs MF, Kitching W, Krohn S, Drew RAI, Haniotakis GE, Francke W (1992) Absolute stereochemistry of the 1,7-dioxaspiro[5.5]undecanols in fruit-fly species, including the olive-fly. J Chem Soc Chem Commun 19:1457–1459

    Article  Google Scholar 

  • Francke W, Bartels J, Meyer H, Schröder F, Kohnle U, Baader E, Vité JP (1995) Semiochemicals from bark beetles: new results, remarks, and reflections. J Chem Ecol 21:1043–1063

    Article  PubMed  CAS  Google Scholar 

  • Francke W, Kitching W (2001) Spiroacetals in insects. Curr Org Chem 5:233–251

    Article  CAS  Google Scholar 

  • Francke W, Reith W, Bergström G, Tengö J (1981) Pheromone bouquet of the mandibular glands in Andrena haemorrhoa F. (Hym., Apoidea). Z Naturforsch C 36:928–932

    Google Scholar 

  • Grison-Pigé L, Bessière J-M, Hossaert-Mckey M (2002) Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. J Chem Ecol 28:283–295

    Article  PubMed  Google Scholar 

  • Heiduk A, Brake I, Tolasch T, Frank J, Jürgens A, Meve U, Dötterl S (2010) Scent chemistry and pollinator attraction in the deceptive trap flowers of Ceropegia dolichophylla. S Afr J Bot 76:762–769

    Article  CAS  Google Scholar 

  • Howell AD, Alarcón R (2007) Osmia bees (Hymenoptera: Megachilidae) can detect nectar-rewarding flowers using olfactory cues. Anim Behav 74:199–205

    Article  Google Scholar 

  • Huber DPW, Gries R, Borden JH, Pierce HD (1999) Two pheromones of coniferophagous bark beetles found in the bark of nonhost angiosperms. J Chem Ecol 25:805–816

    Article  CAS  Google Scholar 

  • Jost L (1918) Die Griffelhaare der Campanulablüte. Flora 111:478–489

    Google Scholar 

  • Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357

    Article  Google Scholar 

  • Kirchner O (1897) Blüteneinrichtungen der Campanulaceen. Jahresh Ver Vaterl Naturkd Württemb 53:193–228

    Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumblebees in flower mimic systems. Behav Ecol 12:447–456

    Article  Google Scholar 

  • Lunau K (1995) Notes on the colour of pollen. Plant Syst Evol 198:235–252

    Article  Google Scholar 

  • Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19

    Article  Google Scholar 

  • Mcdonald JH (2009) Handbook of biological statistics. Sparky House Publishing, Baltimore, p 313

    Google Scholar 

  • Milet-Pinheiro P, Ayasse M, Schlindwein C, Dobson HEM, Dötterl S (2012) Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behavior. Behav Ecol 23:531–538

    Article  Google Scholar 

  • Minckley RL, Roulston TH (2006) Incidental mutualisms and pollen specialization among bees. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 69–98

    Google Scholar 

  • Müller A, Kuhlmann M (2008) Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae): the Asteraceae paradox. Biol J Linn Soc 95:719–733

    Article  Google Scholar 

  • Peakall R, Ebert D, Poldy J, Barrow RA, Francke W, Bower CC, Schiestl FP (2010) Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation. New Phytol 188:437–450

    Article  PubMed  CAS  Google Scholar 

  • Pernal SF, Currie RW (2002) Discrimination and preferences for pollen-based cues by foraging honeybees, Apis mellifera L. Anim Behav 63:369–390

    Article  Google Scholar 

  • Praz CJ, Müller A, Dorn S (2008) Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89:795–804

    Article  PubMed  Google Scholar 

  • Raguso RA (2004) Why are some floral nectars scented? Ecology 85:1486–1494

    Article  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Robertson C (1925) Heterotropic bees. Ecology 6:412–436

    Article  Google Scholar 

  • Schiestl FP, Ayasse M (2001) Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximizing reproductive success? Oecologia 126:531–534

    Article  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  CAS  Google Scholar 

  • Schiestl FP, Peakall R (2005) Two orchids attract different pollinators with the same floral odour compound: ecological and evolutionary implications. Funct Ecol 19:674–680

    Article  Google Scholar 

  • Schlindwein C, Wittmann D, Martins CF, Hamm A, Siqueira JA, Schiffler D, Machado IC (2005) Pollination of Campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Syst Evol 250:147–156

    Article  Google Scholar 

  • STATSOFT, I. 2004. STATISTICA (data analysis software system). Version version 7. www.statsoft.com.

  • Svensson GP, Okamoto T, Kawakita A, Goto R, Kato M (2010) Chemical ecology of obligate pollination mutualisms: testing the ‘private channel’ hypothesis in the Breynia-Epicephala association. New Phytol 186:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Tengö J, Bergström G, Borgkarlson AK, Groth I, Francke W (1982) Volatile compounds from cephalic secretions of females in two cleptoparasite bee genera, Epeolus (Hym., Anthophoridae) and Coelioxys (Hym., Megachilidae). Z Naturforsch C 37:376–380

    Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 35:227–229

    Article  Google Scholar 

  • Westrich P (1989) Die Wildbienen Baden-Württembergs: Spezieller Teil: Die Gattungen und Arten. Eugen Ulmer, Stuttgart, pp 437–972

    Google Scholar 

  • Williams NH (1983) Floral fragrances as cues in animal behavior. In: Jones EC, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 50–72

    Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851

    Article  Google Scholar 

  • Zhang Q, Liu G, Schlyter F, Birgersson G, Anderson P, Valeur P (2001) Olfactory responses of Ips duplicatus from inner Mongolia, china to nonhost leaf and bark volatiles. J Chem Ecol 27:995–1009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hannah Burger and Irmgard Schäffler for methodological support and constructive discussions, Hans-Joachim Flügel (Lebendiges Bienenmuseum Knüllwald) and Jochen Fründ (University of Göttingen, Germany) for providing nests of Chelostoma rapunculi, Gregor Aas for use of a greenhouse in the Ecological Botanical Garden of the University of Bayreuth for flight cage experiments, and the team from the Botanical Garden of the University of Ulm for providing Campanula fields to rear Chelostoma rapunculi bees used in our experiments. We also are thankful to Heather Carew, Jana Seaman, Michael Peterson, Debrakaye Nelson, Jennifer Telfer, Jamie Williamson, and Robert Davey for conducting multiple-choice behavioral experiments, the Station Linné in Sweden for its research facilities, and Whitman College for faculty-student Research funding, including two Perry Awards. Grants were provided to PM-P (Deutscher Akademischer Austauschdienst - A/08/71732) and to CS (Conselho Nacional de Desenvolvimento Científico e Tecnológico - 305692/2009-7 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - BEX/4236/08-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Milet-Pinheiro.

Additional information

In memoriam Jan Tengö

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic Supplementary Material includes details on structure elucidation and synthesis of spiroacetals and preparation of synthetic mixtures for behavioral experiments (DOC 24.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milet-Pinheiro, P., Ayasse, M., Dobson, H.E.M. et al. The Chemical Basis of Host-Plant Recognition in a Specialized Bee Pollinator. J Chem Ecol 39, 1347–1360 (2013). https://doi.org/10.1007/s10886-013-0363-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0363-3

Keywords

Navigation