Skip to main content
Log in

Biotransformation of the Fungal Phytotoxin Fomannoxin by Soil Streptomycetes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Rhizosphere-associated Streptomyces sp. AcH 505 (AcH 505) promotes infection of Norway spruce (Picea abies) with the pathogenic fungus Heterobasidion abietinum 331, while Streptomyces sp. GB 4–2 (GB 4–2) enhances spruce defense against the fungus. To identify whether these bacteria influence the availability of the fungal phytotoxin fomannoxin and hence spruce infection, we analyzed the fomannoxin yield in H. abietinum 331-AcH 505 dual cultures. Further, the fate of fomannoxin was studied by adding the compound to cultures of AcH 505, GB 4–2 and nine other soil streptomycetes. Culture filtrates were extracted with ethyl acetate and analyzed by HPLC. Structures of novel compounds were elucidated by HPLC-HR-ESI-Orbitrap-MS and NMR spectroscopy. Phytotoxicity of the compounds was determined by in vivo measurement of maximum photosystem II efficiency of Arabidopsis thaliana seedlings. The amount of fomannoxin in H. abietinum 331-AcH 505 dual cultures was reduced compared to axenic fungus cultures and fungus-plant dual cultures. Following addition of fomannoxin to AcH 505 cultures, the compound disappeared and three novel fomannoxin derivatives without phytotoxic activity were detected. Another novel compound, fomannoxin amide, was discovered following fomannoxin addition to GB 4–2 cultures. Nine other streptomycetes converted fomannoxin into fomannoxin acid or fomannoxin amide. Both compounds exhibit the same phytotoxicity as fomannoxin. We, thus, conclude that the streptomycete-mediated modulation of spruce infection with H. abietinum 331 does not depend on the availability of fomannoxin. We further add evidence to the observation that the lipophilic side chain of fomannoxin is an important structural element for its phytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asiegbu FO, Adomas A, Stenlid JAN (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409

    Article  PubMed  Google Scholar 

  • Asiegbu FO, Daniel G, Johansson M (1994) Defence related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr.) Bref. Physiol Mol Plant Pathol 45:1–19

    Article  Google Scholar 

  • Bassett C, Sherwood RT, Kepler JA, Hamilton PB (1967) Production and biological activity of fomannosin, a toxic sesquiterpene metabolite of Fomes annosus. Phytopathol 57:1046–1057

    CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of Actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  CAS  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • Donnelly DMX, O'Reilly J, Polonsky J, van Eijk GW (1982) Fomajorin S and D from Fomes annosus (FR) cooke. Tetrahedron Lett 23:5451–5452

    CAS  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  PubMed  CAS  Google Scholar 

  • Hansson D, Menkis A, Olson Å, Stenlid J, Broberg A, Karlsson M (2012) Biosynthesis of fomannoxin in the root rotting pathogen Heterobasidion occidentale. Phytochemistry 84:31–39

    Article  PubMed  CAS  Google Scholar 

  • Heslin MC, Stuart MR, Murchú PÓ, Donnelly DMX (1983) Fomannoxin, a phytotoxic metabolite of Fomes annosus: in vitro production, host toxicity and isolation from naturally infected Sitka spruce heartwood. Eur J Forest Pathol 13:11–23

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78

  • Hirotani M, O'Reilly J, Donnelly DMX, Polonsky J (1977) Fomannoxin—a toxic metabolite of Fomes annosus. Tetrahedron Lett 18:651–652

    Article  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces. John Innes Foundation, Norwich

  • Keller S, Schneider K, Süssmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiot 59:801–803

    Google Scholar 

  • Kepler JA, Wall ME, Mason JE, Basset C, McPhail AT, Sim GA (1967) The structure of fomannosin, a novel sesquiterpene metabolite of the fungus Fomes annosus. J Am Chem Soc 89:1260–1261

    Google Scholar 

  • Korhonen K (1978) Intersterility groups of Heterobasidion annosum. Commun Inst Forest Fenn 94:1–25

    Google Scholar 

  • Lehr N, Adomas A, Asiegbu F, Hampp R, Tarkka M (2009) WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum. Appl Microbiol Biotechnol 85:347–358

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976

    Article  PubMed  Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Progr 3:129–136

    Article  Google Scholar 

  • Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10:1725–1741

    Article  PubMed  CAS  Google Scholar 

  • Möbius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Curr Opin Plant Biol 12:390–398

    Article  PubMed  Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenk NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, pp 115–129

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagy NE, Fossdal CG, Dalen LS, Lönneborg A, Heldal I, Johnsen Ø (2004) Effects of Rhizoctonia infection and drought on peroxidase and chitinase activity in Norway spruce (Picea abies). Physiol Plant 120:465–473

    Article  PubMed  CAS  Google Scholar 

  • Niemelä T, Korhonen K (1998) Taxonomy of the genus Heterobasidion. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: Biology. Ecology, Impact and Control, CAB International, Wallingford

    Google Scholar 

  • Olson Å, Aerts A, Asiegbu F, Belbahri L, Bouzid O, Broberg A, Canbäck B, Coutinho PM, Cullen D, Dalman K, Deflorio G, van Diepen LTA, Dunand C, Duplessis S, Durling M, Gonthier P, Grimwood J, Fossdal CG, Hansson D, Henrissat B, Hietala A, Himmelstrand K, Hoffmeister D, Högberg N, James TY, Karlsson M, Kohler A, Kües U, Lee Y-H, Lin Y-C, Lind M, Lindquist E, Lombard V, Lucas S, Lundén K, Morin E, Murat C, Park J, Raffaello T, Rouzé P, Salamov A, Schmutz J, Solheim H, Ståhlberg J, Vélëz H, de Vries RP, Wiebenga A, Woodward S, Yakovlev I, Garbelotto M, Martin F, Grigoriev IV, Stenlid J (2012) Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol 194:1001–1013

    Article  PubMed  Google Scholar 

  • Otrosina WJ, Cobb Jr, FW (1989) Biology, ecology and epidemiology of Heterobasidion annosum. In: Otrosina WJ, Scharpf RF (eds.). Proceedings of the Symposium on Research and Management of Annosus Root Disease (Heterobasidion annosum) in Western North America, U.S. Department of Agriculture, pp. 26–34

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  PubMed  CAS  Google Scholar 

  • Scherlach K, Busch B, Lackner G, Paszkowski U, Hertweck C (2012) Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew Chem 124:9753–9756

    Article  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Schoonbeek HJ, Jacquat-Bovet AC, Mascher F, Metraux JP (2007) Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Mol Plant Microbe Interact 20:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Schrey SD, Erkenbrack E, Früh E, Fengler S, Hommel K, Horlacher N, Schulz D, Ecke M, Kulik A, Fiedler H-P, Hampp R, Tarkka MT (2012) Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes. BMC Microbiol 12:164

    Article  PubMed  CAS  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    Article  PubMed  CAS  Google Scholar 

  • Schulz D, Nachtigall J, Riedlinger J, Schneider K, Poralla K, Imhoff JF, Beil W, Nicholson G, Fiedler H-P, Süssmuth RD (2009) Piceamycin and its N-acetylcysteine adduct is produced by Streptomyces sp. GB 4–2. J Antibiot 62:513–518

    Article  PubMed  CAS  Google Scholar 

  • Schulz D, Nachtigall J, Geisen U, Kalthoff H, Imhoff JF, Fiedler H-P, Süssmuth RD (2012) Silvalactam, a 24-membered macrolactam antibiotic produced by Streptomyces sp. Tü 6392. J Antibiot 65:369–372

    Article  PubMed  CAS  Google Scholar 

  • Shain L (1971) The response of sapwood of Norway spruce to infection by Fomes annosus. Phytopathol 61:301–307

    Article  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Sonnenbichler J, Bliestle IM, Peipp H, Holdenrieder O (1989) Secondary fungal metabolites and their biological activities, I. Isolation of antibiotic compounds from cultures of Heterobasidion annosum synthesized in the presence of antagonistic fungi or host plant cells. Biol Chem Hoppe-Seyler 370:1295–1303

    Google Scholar 

  • Sonnenbichler J, Dietrich J, Schafer W, Zetl I (1993a) Secondary fungal metabolites and their biological activities, IV. Synthesis of compounds with structural similarities to the toxic metabolites of the pathogenic fungus Heterobasidion annosum and investigation of their antibiotic activities. Biol Chem Hoppe-Seyler 374:1047–1055

    Google Scholar 

  • Sonnenbichler J, Peipp H, Dietrich J (1993b) Secondary fungal metabolites and their biological activities, III. Further metabolites from dual cultures of the antagonistic basidiomycetes Heterobasidion annosum and Gloeophyllum abietinum. Biol Chem Hoppe-Seyler 374:467–473

    Google Scholar 

  • Wargo MJ, Hogan DA (2006) Fungal–bacterial interactions: A mixed bag of mingling microbes. Curr Opin Microbiol 9:359–364

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Woeste U (1956) Anatomische Untersuchungen über die Infektionswege einiger Wurzelpilze. Phytopath Z 26:225–272

    Google Scholar 

  • Woodward S, Stenlid J, Karjalainen R, Hüttermann A (1998) Heterobasidion annosum: Biology, ecology, impact and control. CAB International, Wallingford

    Google Scholar 

  • Zweimüller M, Antus S, Kovacs T, Sonnenbichler J (1997) Biotransformation of the fungal toxin fomannoxin by conifer cell cultures. Biol Chem 378:915–921

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mika Tarkka for critical reading of the manuscript, Margret Ecke and Andreas Kulik for technical assistance, and Sarah Mailänder for statistical analysis. This work has supported by the German Research Foundation (DFG, graduate school ‘Infection Biology’) and the Cluster of Excellence “Unifying Concepts in Catalysis” (DFG) coordinated by the Technical University Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia D. Schrey.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horlacher, N., Nachtigall, J., Schulz, D. et al. Biotransformation of the Fungal Phytotoxin Fomannoxin by Soil Streptomycetes. J Chem Ecol 39, 931–941 (2013). https://doi.org/10.1007/s10886-013-0290-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0290-3

Keywords

Navigation