Skip to main content
Log in

Changes in Rice Allelopathy and Rhizosphere Microflora by Inhibiting Rice Phenylalanine Ammonia-lyase Gene Expression

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Gene expression of phenylalanine ammonia-lyase (PAL) in allelopathic rice PI312777 was inhibited by RNA interference (RNAi). Transgenic rice showed lower levels of PAL gene expression and PAL activity than wild type rice (WT). The concentrations of phenolic compounds were lower in the root tissues and root exudates of transgenic rice than in those of wild type plants. When barndyardgrass (BYG) was used as the receiver plant, the allelopathic potential of transgenic rice was reduced. The sizes of the bacterial and fungal populations in rice rhizospheric soil at the 3-, 5-, and 7-leaf stages were estimated by using quantitative PCR (qPCR), which showed a decrease in both populations at all stages of leaf development analyzed. However, PI312777 had a larger microbial population than transgenic rice. In addition, in T-RFLP studies, 14 different groups of bacteria were detected in WT and only 6 were detected in transgenic rice. This indicates that there was less rhizospheric bacterial diversity associated with transgenic rice than with WT. These findings collectively suggest that PAL functions as a positive regulator of rice allelopathic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bastiaans, L. and Kropff, M. J. 2003. WEEDS | Weed Competition. Elsevier, Oxford.

    Google Scholar 

  • Belz, R. G. 2007. Allelopathy in crop/weed interactions: an update. Pest Manag. Sci. 63:308–326.

    Google Scholar 

  • Bertin, C., Yang, X. H., and Weston, L. A. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.

    Article  CAS  Google Scholar 

  • Bi, H. H., Zeng, R. S., Su, L. M., An, M., and Luo, S. M. 2007. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol. 33:1089–1103.

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Cristal, J. J., Anzellotti, D., and Gonzez-Fontes, A. 2002. Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiol. Biochem. 40:997–1002.

    Article  Google Scholar 

  • Chauhan, B. S. and Johnson, D. E. 2011. Row spacing and weed control timing affect yield of aerobic rice. Field Crops. Res. 121:226–231.

    Article  Google Scholar 

  • Chung, I. M., Kim, J. T., and Kim, S. H. 2006. Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J. Agric. Food Chem. 54:2527–2536.

    Article  PubMed  CAS  Google Scholar 

  • Cipollini, D., Rigsby, C. M., and Barto, E. K. 2012. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38:714–727.

    Article  PubMed  CAS  Google Scholar 

  • Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G., and Nicholson, R. L. 1984. Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol. Plant Pathol. 25:111–123.

    Article  CAS  Google Scholar 

  • Dilday, R. H., Lin, J., and Yan, W. 1994. Identification of allelopathy in USDA-ARS 320 rice germplasm collection. Aust. J. Exp. Agric. 34:907–910.

    Article  Google Scholar 

  • Fang, C. X., Xiong, J., Qiu, L., Wang, H. B., Song, B. Q., He, H. B., Lin, R. Y., and Lin, W. X. 2009. Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul. 57:163–172.

    Article  CAS  Google Scholar 

  • Fang, C. X., Wang, Q. S., Yu, Y., Li, Q. M., Zhang, H. L., Wu, X. C., Chen, T., and Lin, W. X. 2011. Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul. 65:1–10.

    Article  CAS  Google Scholar 

  • Ferrer, J. L., Austin, M. B., Stewart Jr., C., and Noel, J. P. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46:356–370.

    Article  PubMed  CAS  Google Scholar 

  • Gealy, D., Moldenhauer, K., and Duke, S. 2013. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13C isotope discrimination analysis. J. Chem. Ecol. 39:186–203.

    Google Scholar 

  • He, H. Q., Lin, W. X., Liang, Y. Y., Song, B. Q., Ke, Y. Q., Guo, Y. C., and Liang, K. J. 2005. Analyzing the molecular mechanism of crop allelopathy by using differential proteomics. Acta Ecol. Sin. 25:3141–3146 (in Chinese with English abstract).

    CAS  Google Scholar 

  • He, H. B., Wang, H. B., Fang, C. X., Lin, Z. H., Yu, Z. M., and Lin, W. X. 2012a. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One 7:e37201. doi:10.1371/journal.pone.0037201.

    Article  PubMed  CAS  Google Scholar 

  • He, H. B., Wang, H. B., Fang, C. X., Wu, H. W., Guo, X. K., Liu, C. H., Lin, Z. H., and Lin, W. X. 2012b. Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J. Plant Physiol.. doi:10.1016/j.jplph.2012.06.018.

  • Höfgen, R. and Willmitzer, L. 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16:9877.

    Article  PubMed  Google Scholar 

  • IRRI (International Rice Research Institute). 1993. Rice Almanac 1993–95. IRRI, P.O. Box: 933, 1099 Manila, Philippines

  • Jefferson, R. A. 1989. The GUS reporter system. Nature 342:837Y838.

    Article  Google Scholar 

  • Johnson, D. E., Wopereis, M. C. S., Mbodj, D., Diallo, S., Powers, S., and Haefele, S. M. 2004. Timing of weed management and yield losses due to weeds in irrigated rice in the Sahel. Field Crop Res. 85:31–42.

    Article  Google Scholar 

  • Kato-Noguchi, H. 2011. Barnyard grass-induced rice allelopathy and momilactone B. J. Plant Physiol. 168:1016–1020.

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi, H. and Peters, R. J. 2013. The role of momilactones in rice allelopathy, J. Chem. Ecol. 39:175–185.

    Google Scholar 

  • Kato-Notuchi, H., Tamura, K., Sasaki, H., and Suenaga, K. 2012. Identification of two phytotoxins, blumenol A and grasshopper ketone, in the allelopathic Japanese rice variety Awaakamai. J. Plant Physiol. 169:682–685.

    Article  Google Scholar 

  • Lehoczky, E., Nelima, M. O., Szabó, R., Szalai, A., and Nagy, P. 2011. Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops. Commun. Agric. Appl. Biol. Sci. 76:537–554.

    PubMed  CAS  Google Scholar 

  • Lin, R. Y., Rong, H., Zhou, J. J., Yu, C. P., Ye, C. Y., Chen, L. S., and Lin, W. X. 2007. Impact of allelopathic rice seedlings on rhizospheric microbial populations and their functional diversity. Acta Ecol. Sin. 27:3644–3654.

    Article  CAS  Google Scholar 

  • Lin, R. Y., Wang, H. B., Guo, X. K., Ye, C. Y., He, H. B., Zhou, Y., and Lin, W. X. 2011. Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils. Allelopathy J. 28:225–236.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  • Macdonald, M. J. and D’Cunha, G. B. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Macias, F. A., Chinchilla, N., Varela, R. M., and Molinllo, J. M. G. 2006. Bioactive steroids from Oryza sativa L. Steroids 71:603–608.

    Article  PubMed  CAS  Google Scholar 

  • Mattice, J., Lavy, T., Skulman, B., and Dilday, R. H. 1998. Searching for allelochemicals in rice that control ducksalad, pp. 81–98, in M. Olofsdotter (ed.), Allelopathy in Rice. Proceeding of the Workshop on Allelopathy in Rice. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  • Peršoh, D., Theuerl, S., Buscot, F., and Rambold, G. 2008. Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J. Microbiol. Meth. 75:19–24.

    Article  Google Scholar 

  • Seal, A. N., Pratley, J. E., Haig, T., and An, M. 2004. Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. J. Chem. Ecol. 30:1647–1662.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y., Jin, L., Xiao, P., Lu, Y., and Bao, J. S. 2009. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 49:106–111.

    Article  CAS  Google Scholar 

  • Shin, D. H., Kim, K. U., Sohn, D. S., Kang, S. G., Kim, H. Y., Lee, I. J., and Kim, M. Y. 2000. Regulation of gene expression related to allelopathy, pp. 109Y24, in K. U. Kim and D. H. Shin (eds.), Rice Allelopathy. Proceedings of the Workshop in Rice Allelopathy. Kyungpook National University, Korea, Taegu.

    Google Scholar 

  • Singleton, V. L., Orthofer, R., and Lamuela-Raventós, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152–178.

    Article  CAS  Google Scholar 

  • Song, B. Q., Xiong, J., Fang, C. X., Qiu, L., Lin, R. Y., Liang, Y. Y., and Lin, W. X. 2008. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J. Chem. Ecol. 34:688–695.

    Article  PubMed  CAS  Google Scholar 

  • Supartana, P., Shimizu, T., Shioiri, H., Nogawa, M., Nozue, M., and Kojima, M. 2005. Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J. Biosci. Bioeng. 4:391–397.

    Article  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. B., Yu, Z. M., He, H. B., Guo, X. K., Huang, J. W., Zhou, Y., Xu, Z. B., and Lin, W. X. 2012. Relationship between allelopathic potential and grain yield of different allelopathic rice accessions. Chin. J. Eco-Agric. 20:75–79 (in Chinese with English abstract).

    Article  Google Scholar 

  • Worthington, M. and Reberg-Horton, S. C. 2013. Breeding cereal crops for enhanced weed suppression: optimizing allelopathy and competitive ability. J. Chem. Ecol. 39:2. 39:213–231.

    Google Scholar 

  • Xu, Z. H., Guo, D. P., Yu, L. Q., Zhao, M., Zhang, X., Li, D., Zheng, K. L., and Ye, Y. L. 2003. Molecular biological study on the action mechanism of rice allelochemicals against weeds. Chin. J. Appl. Ecol. l4:829–833. in Chinese with English abstract.

    Google Scholar 

  • Xu, M., Galhano, R., Wiemann, P., Bueno, E., Tiernan, M., Wu, W., Chung, I. M., Gershenzon, J., Tudzynski, B., Sesma, A., and Peters, R. J. 2012. Genetic evidence for natural product-mediated plantYplant allelopathy in rice (Oryza sativa). New Phytol. 193:570–575.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, S., Forno, D. A., and Cock, J. H. 1976. pp. 1–83, Laboratory Manual for Physiological Studies of Rice, 3rd ed. The International Rice Research Institute, Manila, the Philippines.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31271670, 31070447, 31070403, 30471028) and Provincial Natural Science Foundation of Fujian, China (No. 2011J05045, 2010J05045, 2008J0051) and the Research Foundation of Education Department of Fujian Province (No. JA11087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiong Lin.

Additional information

Changxun Fang and Yuee Zhuang contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, C., Zhuang, Y., Xu, T. et al. Changes in Rice Allelopathy and Rhizosphere Microflora by Inhibiting Rice Phenylalanine Ammonia-lyase Gene Expression. J Chem Ecol 39, 204–212 (2013). https://doi.org/10.1007/s10886-013-0249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0249-4

Keywords

Navigation