Skip to main content
Log in

In planta Mechanism of Action of Leptospermone: Impact of Its Physico-Chemical Properties on Uptake, Translocation, and Metabolism

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Leptospermone is a natural β-triketone that specifically inhibits the enzyme p-hydrophyphenylpyruvate dioxygenase, the same molecular target site as that of the commercial herbicide mesotrione. The β-triketone-rich essential oil of Leptospermum scoparium has both preemergence and postemergence herbicidal activity, resulting in bleaching of treated plants and dramatic growth reduction. Radiolabeled leptospermone was synthesized to investigate the in planta mechanism of action of this natural herbicide. Approximately 50 % of the absorbed leptospermone was translocated to the foliage suggesting rapid acropetal movement of the molecule. On the other hand, very little leptospermone was translocated away from the point of application on the foliage, indicating poor phloem mobility. These observations are consistent with the physico-chemical properties of leptospermone, such as its experimentally measured logP and pK a values, and molecular mass, number of hydrogen donors and acceptors, and number of rotatable bonds. Consequently, leptospermone is taken up readily by roots and translocated to reach its molecular target site. This provides additional evidence that the anecdotal observation of allelopathic suppression of plant growth under β-triketone-producing species may be due to the release of these phytotoxins in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avdeef, A., Comer, J. E. A., and Thomson, S. J. 1993. pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to pKa determination of water-insoluble substances. Anal. Chem. 65:42–49.

    Article  CAS  Google Scholar 

  • Beaudegnies, R., Edmunds, A. J. F., Fraser, T. E. M., Hall, R. G., Hawkes, T. R., Mitchell, G., Schaetzer, J., Wendeborn, S., and Wibley, J. 2009. Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective. Bioorg. Med. Chem. 17:4134–4152.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, G. G., Bromilow, R. H., and Evans, A. A. 1982. Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 13:495–504.

    Article  CAS  Google Scholar 

  • Cantrell, C. L., Dayan, F. E., and Duke, S. O. 2012. Natural products as sources for new pesticides. J. Nat. Prod. 75:1231–1242.

    Article  PubMed  CAS  Google Scholar 

  • Christoph, F., Kaulfers, P.-M., and Stahl-Biskup, E. 2000. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of β-triketones. Planta Med 66:556–560.

    Article  PubMed  CAS  Google Scholar 

  • Christoph, F., Kaulfers, P. M., and Stahl-Biskup, E. 2001. In vitro evaluation of the antibacterial activity of β-triketones admixed to Melaleuca oils. Planta Med 67:768–771.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, F. E. 2002. Octan-1-ol/water partition coefficients of p-benzo and p-naphthoquinones corrected for pH effect. J. Chem. Res. (S) 10:518–519.

    Article  Google Scholar 

  • Dayan, F. E. and Duke, S. O. 2003. Trichomes and root hairs: natural pesticide factories. Pestic. Outlook 4:175–178.

    Article  Google Scholar 

  • Dayan, F. E., Duke, S. O., Sauldubois, A., Singh, N., McCurdy, C., and Cantrell, C. L. 2007. p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry 68:2004–2014.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, F. E., Singh, N., McCurdy, C., Godfrey, C. A., Larsen, L., Weavers, R. T., van Klink, J. W., and Perry, N. B. 2009. β-triketone inhibitors of plant p-hydroxyphenylpyruvate dioxygenase: modeling and comparative molecular field analysis of their interactions. J. Agric. Food Chem. 57:5194–5200.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, F. E., Howell, J. L., Marais, J. M., Ferreira, D., and Koivunen, M. E. 2011. Manuka oil, a natural herbicide with preemergence activity. Weed Sci. 59:464–469.

    Article  CAS  Google Scholar 

  • Dayan, F. E., Owens, D. K., and Duke, S. O. 2012. Rationale for a natural products approach to herbicide discovery. Pest Manag. Sci. 68:519–528.

    Article  PubMed  CAS  Google Scholar 

  • Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of herbicide action. Prentice-Hall, Englewood Cliffs. pp 441.

  • Douglas, M., Anderson, R., Van Klink, J., Perry, N., and Smallfield, B. 2001. Defining North Island manuka chemotype resources. Crop Food Res. Rep 447:1–13. http://www.laszlo.ind.br/admin/artigos/arquivos/manuka.pdf.

    Google Scholar 

  • Douglas, M. H., van Klink, J. W., Smallfield, B. M., Perry, N. B., Anderson, R. E., Johnstone, P., and Weavers, R. T. 2004. Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65:1255–1264.

    Article  PubMed  CAS  Google Scholar 

  • Duke, S. O., Rimando, A. M., Duke, M. V., Paul, R. N., Ferreira, J. F. S., and Smeda, R. J. 1999. Sequestration of phytotoxins by plants: implications of biosynthetic production, pp. 127–136, in H. G. Cutler and S. J. Cutler (eds.), Biologically active natural products: agrochemicals. CRC Press, Washington, DC.

    Google Scholar 

  • Duke, S. O., Romagni, J. G., and Dayan Franck, E. 2000. Natural products as sources for new mechanisms of herbicidal action. Crop. Prot. 19:583–589.

    Article  CAS  Google Scholar 

  • Ghose, A. K., Pritchett, A., and Crippen, G. M. 1988. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: modeling hydrophobic interactions. J. Comput. Chem. 9:80–90.

    Article  CAS  Google Scholar 

  • Gray, R. A., Tseng, C. K., and Rusay, R. J. 1980. 1-Hydroxy-2-(alkylketo)-4,4,6,6-tetramethyl cyclohexen-3,5-dione herbicides patent US. Patent 4:202,840.

    Google Scholar 

  • Gutz, I. G. R. 2012. CurTiPot—pH and acid—base titration curves: Analysis and simulation software. http://www2.iq.usp.br/docente/gutz/Curtipot_.html.

  • Hellyer, R. O. 1968. The occurrence of β-triketones in the steam-volatile oils of some myrtaceous australian plants. Aust. J. Chem. 21:2825–2828.

    Article  CAS  Google Scholar 

  • Hyder, P. W., Fredrickson, E. L., Estell, R. E., and Lucero, M. E. 2002. Transport of phenolic compounds from leaf surface of creosotebush and tarbush to soil surface by precipitation. J. Chem. Ecol. 28:2475–2482.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. T. 1980. The leaf anatomy of Leptospermum Forst. (Myrtaceae). Aust. J. Bot. 28:77–104.

    Article  Google Scholar 

  • Kleier, D. A. 1988. Phloem mobility of xenobiotics: I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiol. 86:803–810.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. L., Prisbylla, M. P., Cromartie, T. H., Dagarin, D. P., Howard, S. W., Provan, W. M., Ellis, M. K., Fraser, T., and Mutter, L. C. 1997. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 45:601–609.

    CAS  Google Scholar 

  • Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25.

    Article  CAS  Google Scholar 

  • List, S., Brown, P. H., and Walsh, K. B. 1995. Functional anatomy of the oil glands of Melaleuca alternifolia (Myrtaceae). Aust. J. Bot. 43:629–641.

    Article  Google Scholar 

  • Meazza, G., Scheffler, B. E., Tellez, M. R., Rimando, A. M., Nanayakkara, N. P. D., Khan, I. A., Abourashed, E. A., Romagni, J. G., Duke, S. O., and Dayan, F. E. 2002. The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59:281–288.

    Article  Google Scholar 

  • Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K., and Wichert, R. A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest Manag. Sci. 57:120–128.

    Article  PubMed  CAS  Google Scholar 

  • Norris, S. R., Barrette, T. R., and Dellapenna, D. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2149.

    PubMed  CAS  Google Scholar 

  • Pagliara, A., Reist, M., Geinoz, S., Carrupt, P. A., and Testa, B. 1999. Evaluation and prediction of drug permeation. J. Pharm. Pharmacol. 51:1339–1357.

    Article  PubMed  CAS  Google Scholar 

  • Pallett, K. E., Little, J. P., Sheekey, M., and Veerasekaran, P. 1998. The mode of action of isoxaflutole I. Physiological effects, metabolism, and selectivity. Pestic. Biochem. Physiol. 62:113–124.

    Article  CAS  Google Scholar 

  • Reichling, J., Koch, C., Stahl-Biskup, E., Sojka, C., and Schnitzler, P. 2005. Virucidal activity of a β-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med 71:1123–1127.

    Article  PubMed  CAS  Google Scholar 

  • Ruelle, P., Rey-Mermet, C., Buchmann, M., Nam-Tran, H., Kesselring, U. W., and Huyskens, P. L. 1991. A new predictive equation for the solubility of drugs based on the thermodynamics of mobile disorder. Pharm. Res. 8:840–850.

    Article  PubMed  CAS  Google Scholar 

  • Senseman, S. A. 2007. Herbicide handbook. Weed Science Society of America, Lawrence, KS. 458p.

    Google Scholar 

  • Sicbaldi, F., Sacchi, G. A., Trevisan, M., and Del Re, A. A. M. 1997. Root uptake and xylem translocation of pesticides from different chemical classes. Pestic. Sci. 50:111–119.

    Article  CAS  Google Scholar 

  • Spooner-Hart, R. N., and Basta, A. H. 2002. Pesticidal compositions containing β-diketones and β-triketones from essential oils patent Pct. Int. Appl. Coden PIXXD2 WO 2002089587, AI 20021114, CAN 137:347894, AN 2002:868663.

  • Stefanello, M. A., Pascoal, A. C. R. F., and Salvador, M. J. 2011. Essential oils from neotropical myrtaceae: chemical diversity and biological properties. Chem. Biodiv. 8:73–94.

    Article  CAS  Google Scholar 

  • Tice, C. M. 2001. Selecting the right compounds for screening: does Lipinski’s Rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag Sci. 57:3–16.

    Article  PubMed  CAS  Google Scholar 

  • van Klink, J. W., Brophy, N. B., Perry, N. B., and Weavers, R. T. 1999. β-Triketones from myrtaceae: isoleptospermone from Leptospermum scoparium and papuanone from Corymbia dallachiana. J. Nat. Prod. 62:487–489.

    Article  PubMed  Google Scholar 

  • van Klink, J. W., Larsen, L., Perry, N. B., Weavers, R. T., Cook, G. M., Bremer, P. J., Mackenzie, A. D., and Kirika, T. 2005. Triketones active against antibiotic-resistant bacteria: synthesis, structure-activity relationships, and mode of action. Bioorg. Med. Chem. 13:6651–6662.

    Article  PubMed  Google Scholar 

  • Wang, R. L., Staehelin, C., Dayan, F. E., Song, Y. Y., Su, Y. J., and Zeng, R. S. 2012. Simulated acid rain accelerates litter decomposition and enhances the allelopathic potential of the invasive plant Wedelia trilobata (creeping daisy). Weed Sci. 60:462–467.

    Article  CAS  Google Scholar 

  • Wichert, R. A., Townson, J. K., Bartlett, D. W., and Foxon, G. A. 1999. Technical review of mesotrione, a new maize herbicide. Proc. Brighton Conf. Weeds 1:105–110.

    Google Scholar 

Download references

Acknowledgments

We are thankful for the excellent technical assistance provided by J’Lynn Howell (USDA-ARS NPURU, University MS) and Krishna N. Reddy and Efren Ford (USDA-ARS CPSRU, Stoneville, MS) for giving us access to their laboratory biological oxidizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck E. Dayan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1089 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owens, D.K., Nanayakkara, N.P.D. & Dayan, F.E. In planta Mechanism of Action of Leptospermone: Impact of Its Physico-Chemical Properties on Uptake, Translocation, and Metabolism. J Chem Ecol 39, 262–270 (2013). https://doi.org/10.1007/s10886-013-0237-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0237-8

Keywords

Navigation