Skip to main content
Log in

Chemistry and Anatomy of the Frontal Gland in Soldiers of the Sand Termite Psammotermes hybostoma

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A great diversity of defensive chemicals has been described in termite soldiers equipped with a unique defensive organ, the frontal gland. Along with the functional diversity of these compounds, reflecting the evolutionary history of particular lineages and their defensive strategies, a considerable degree of chemical variability often occurs among species and populations. Thus, the chemistry of termite defense may provide information on the phylogeny and geographic dispersal of species and populations. In this paper, we report on the anatomy of the frontal gland and on the diversity of soldier defensive chemicals in the sand termite, Psammotermes hybostoma, from nine colonies and five different localities in Egypt. Using gas chromatography–mass spectrometry, a total of 30 sesquiterpene hydrocarbons, or their oxygenated derivatives, were detected, and the chemical identity of most of them identified. In addition, a ketone, an ester, and a diterpene were identified in some colonies. Within colonies, the chemical composition was stable and did not differ among soldier size categories. However, there were pronounced quantitative and qualitative differences in frontal gland chemicals among colonies and geographic locations. The findings are discussed in a broader comparison with other termite taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, R. P. 2007. Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, USA.

    Google Scholar 

  • Adio, A. M., Paul, C., Tesso, H., Kloth, P., and König, W. A. 2004. Absolute configuration of helminthogermacrene. Tetrahedron: Asymmetry 15:1631–1635.

    Article  CAS  Google Scholar 

  • Austin, J. W., Szalanski, A. L., and Cabrera, B. J. 2004. Phylogenetic Analysis of the Subterranean Termite Family Rhinotermitidae (Isoptera) by Using the Mitochondrial Cytochrome Oxidase II Gene. Ann. Entomol. Soc. Am. 97:548–555.

    Article  CAS  Google Scholar 

  • Bagnères, A.-G., Clément, J.-L. A., Blum, M. S., Severson, R. F., Joulie, C., and Lange, C. 1990. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J. Chem. Ecol. 16:3213–3244.

    Article  Google Scholar 

  • Cheng, S. S., Lin, H. Y., and Chang, S. T. 2005. Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J. Agric. Food Chem. 53:614–9.

    Article  PubMed  CAS  Google Scholar 

  • Clément, G. 1952. Recherches sur le polymorphisme de Psammotermes hybostoma Desneux. Ann. Sci. Nat. Zool. 14:95–116.

    Google Scholar 

  • Crespi, B. J. 1994. Three conditions for the evolution of eusociality: Are they sufficient? Insectes Soc. 41:395–400.

    Article  Google Scholar 

  • Deligne, J., Quennedey, A., and Blum, M. S. 1981. The enemies and defense mechanisms of termites, pp. 1–76, in H. R. Hermann (ed.), Social insects, Vol. 2. Academic, New York, London etc.

    Google Scholar 

  • Fischbach, M. A. and Clardy, F. 2007. One pathway, many products. Nat. Chem. Biol. 3:353–355.

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon, J. and Dudareva, N. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3:408–14.

    Article  PubMed  CAS  Google Scholar 

  • Goh, S. H., Chuah, C. H., Tho, Y. P., and Prestwich, G. D. 1984. Extreme intraspecific chemical variability in soldier defense secretions of allopatric and sympatric colonies of Longipeditermes longipes. J. Chem. Ecol. 10:929–944.

    Article  CAS  Google Scholar 

  • Grassé, P. P. 1984. Termitologia: anatomie, physiologie, biologie, systématique des termites. Tome 2. Fondation des sociétés - construction. Masson, Paris, New York etc.

  • Hanus, R., Šobotník, J., Valterová, I., and Lukáš, J. 2006. The ontogeny of soldiers in Prorhinotermes simplex (Isoptera, Rhinotermitidae). Insectes Soc. 53:249–257.

    Article  Google Scholar 

  • Harris, W. V. 1970. Termites of palearctic region, pp. 295–313, in K. Krishna and F. M. Weesner (eds.), Biology of Termites, Vol. 2. Academic, London & New York.

    Google Scholar 

  • Inward, D. J. G., Vogler, A. P., and Eggleton, P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44:953–967.

    Article  PubMed  CAS  Google Scholar 

  • Jouilan, D. and König, W. A. 1998. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E. B.-Verlag, Hamburg.

    Google Scholar 

  • Kilic, A., Hafizoglu, H., Kollmannsberger, H., and Nitz, S. 2004. Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L. J. Agric. Food Chem. 52:1601–1606.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, M., Nagnan, P., Clément, J.-L. A., Lange, C., Peru, L., and Basselier, J. J. 1990. Geranyllinalool (diterpene alcohol). An insecticidal component of pine wood and termites (Isoptera: Rhinotermitidae) in four European ecosystems. J. Chem. Ecol. 16:2067–2079.

    Article  CAS  Google Scholar 

  • Lo, N., Kitade, O., Miura, T., Constantino, R., and Matsumoto, T. 2004. Molecular phylogeny of the Rhinotermitidae. Insectes Soc. 51:365–371.

    Article  Google Scholar 

  • Marques, F. A., McElfresh, J. S., and Millar, J. G. 2000. Kováts retention indexes of monounsaturated C12, C14, and C16 alcohols, acetates and aldehydes commonly found in lepidopteran pheromone blends. J. Braz. Chem. Soc. 11:592–599.

    Article  CAS  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Am. Nat. 106:283–292.

    Article  Google Scholar 

  • Ohkuma, M., Yuzawa, H., Amornsak, W., Sornnuwat, Y., Takematsu, Y., Yamada, A., Vongkaluang, C., Sarnthoy, O., Kirtibutr, N., Noparatnaraporn, N., Kudo, T., and Inoue, T. 2004. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol. Phylogenet. Evol. 31:701–710.

    Article  PubMed  CAS  Google Scholar 

  • Perdereau, E., Dedeine, F., Christides, J. P., and Bagnères, A.-G. 2010. Variations in Worker Cuticular Hydrocarbons and Soldier Isoprenoid Defensive Secretions Within and Among Introduced and Native Populations of the Subterranean Termite, Reticulitermes flavipes. J. Chem. Ecol. 36:1189–1198.

    Article  PubMed  CAS  Google Scholar 

  • Piskorski, R., Hanus, R., Kalinová, B., Valterová, I., Křeček, J., and Šobotník, J. 2009. Chemical composition of the frontal gland secretion in imagoes of the termite genus Prorhinotermes (Isoptera: Rhinotermitidae): geographic and temporal variations. Biol. J. Linnean Soc. 98:384–392.

    Article  Google Scholar 

  • Piskorski, R., Hanus, R., Vašíčková, S., Cvačka, J., Šobotník, J., Svatoš, A., and Valterová, I. 2007. Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland of three Prorhinotermes termite species. J. Chem. Ecol. 33:1787–1794.

    Article  PubMed  CAS  Google Scholar 

  • Prestwich, G. D. 1984. Defense mechanisms of termites. Annu. Rev. Entomol. 29:201–232.

    Article  CAS  Google Scholar 

  • Quennedey, A. 1984. Morphology and ultrastructure of termite defense glands, pp. 151–200, in H. R. Hermann (ed.), Defensive Mechanisms in Social Insects. Praeger, New York, Philadelphia etc.

    Google Scholar 

  • Quintana, A., Reinhard, J., Faure, R., Uva, P., Bagnères, A.-G., Massiot, G., and Clément, J.-L. A. 2003. Interspecific variation in terpenoid composition of defensive secretions of European Reticulitermes termites. J. Chem. Ecol. 29:639–652.

    Article  PubMed  CAS  Google Scholar 

  • Reinhard, J., Quintana, A., Sreng, L., and Clément, J.-L. A. 2003. Chemical signals inducing attraction and alarm in European Reticulitermes termites (Isoptera, Rhinotermitidae). Sociobiology 42:675–691.

    Google Scholar 

  • Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. J. Cell Biol. 17:208–12.

    Article  PubMed  CAS  Google Scholar 

  • Roisin, Y. 1988. Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphology 107:339–347.

    Article  Google Scholar 

  • Roisin, Y. 2000. Diversity and Evolution of Caste Patterns, pp. 95–119, in T. Abe, D. E. Bignell, and M. Higashi (eds.), Termites: Evolution, Sociality, Symbioses. Ecology. Kluwer Academic Publishers, London.

    Google Scholar 

  • Roonwal, M. L. 1988. Field ecology and soldier polymorphism in the Indian sand termite, Psammotermes rajasthanicus (Rhinotermitidae, Psammotermitinae). Indian J. Ent. 47:455–460.

    Google Scholar 

  • Scheffrahn, R. H., Gaston, L. K., Sims, J. J., and Rust, M. K. 1983. Identification of the defensive secretion from soldiers of the North American termite, Amitermes wheeleri (Desneux) (Isoptera: Termitidae). J. Chem. Ecol. 9:1293–1305.

    Google Scholar 

  • Sillam-dussès, D., Hanus, R., Abd el-latif, A. O., Jiroš, P., Krasulová, J., Kalinová, B., Valterová, I., and Šobotník, J. 2011. Sex pheromone and trail pheromone of the sand termite Psammotermes hybostoma (Rhinotermitidae: Psammotermitinae). J. Chem. Ecol. 37:179–188.

    Article  PubMed  Google Scholar 

  • Svatoš, A. and Attygale, A. B. 1997. Characterization of Vinyl-Substituted, Carbon-Carbon Double Bonds by GC/FT-IR Analysis. Anal. Chem. 69:1827–1836.

    Article  PubMed  Google Scholar 

  • Šobotník, J., Weyda, F., Hanus, R., Kyjaková, P., and Doubský, J. 2004. Ultrastructure of the frontal gland in Prorhinotermes simplex (Isoptera: Rhinotermitidae) and quantity of the defensive substance. Eur. J. Entomol. 101:153–163.

    Google Scholar 

  • Šobotník, J., Hanus, R., Kalinová, B., Piskorski, R., Cvačka, J., Bourguignon, T., and Roisin, Y. 2008. (E, E)-α-Farnesene, an Alarm Pheromone of the Termite Prorhinotermes canalifrons. J. Chem. Ecol. 34:478–486.

    Article  PubMed  Google Scholar 

  • Šobotník, J., Hanus, R., and Jirošová, A. 2010. Chemical warfare in termites. J. Insect Physiol. 56:1012–1021.

    Article  PubMed  Google Scholar 

  • Štys, P. and Šobotník, J. 1999. Comments on classifications of insect ontogenies, and occurrence of proneometabolous wing development in termite genus Prorhinotermes (Hexapoda: Isoptera). Acta Soc. Zool. Bohem. 63:483–492.

    Google Scholar 

  • Takeda, K. 1974. Stereospecific cope rearrangement of the germacrene-type sesquiterpenes. Tetrahedron. 30:1525–1534.

    Google Scholar 

  • Valterová, I., Křeček, J., and Vrkoč, J. 1989. Intraspecific variation in the defence secretions of Nasutitermes ephratae soldiers and the biological activity of some of their components. Biochem. Syst. Ecol. 17:327–332.

    Article  Google Scholar 

  • Wadhams, L. J., Baker, R., and Howse, P. E. 1974. 4,11-Epoxy-cis-eudesmane: A novel oxygenated sesquiterpene in the frontal gland secretion of the termite Amitermes evuncifer Silvestri. Tetrahedron Lett. 18:1697–1800.

    Article  Google Scholar 

  • Waller, D. A. and La fage, J. P. 1987. Unpalatability as a defense of Coptotermes formosanus Shiraki soldiers against ant predation. J. Appl. Entomol. 103:148–153.

    Article  Google Scholar 

  • Zhu, B. C., Henderson, G., Sauer, A. M., Yu, Y., Crowe, W., and Laine, R. A. 2003. Structure-activity of valencenoid derivatives and their repellence to the Formosan subterranean termite. J. Chem. Ecol. 29:2695–2701.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Czech Science Foundation (P506/10/1570), by the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague (No. Z40550506), and by the Grant Agency of the Charles University in Prague (SVV 2012–265201 and MSM 0021620857). We are grateful to Thomas Bourguignon for the information on developmental pathways in Psammotermes and for the scanning electron microphotographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hanus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasulová, J., Hanus, R., Kutalová, K. et al. Chemistry and Anatomy of the Frontal Gland in Soldiers of the Sand Termite Psammotermes hybostoma . J Chem Ecol 38, 557–565 (2012). https://doi.org/10.1007/s10886-012-0123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0123-9

Keywords

Navigation