Skip to main content
Log in

Genetic Variation of Lodgepole Pine, Pinus contorta var. latifolia, Chemical and Physical Defenses that Affect Mountain Pine Beetle, Dendroctonus ponderosae, Attack and Tree Mortality

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant secondary chemistry is determined by both genetic and environmental factors, and while large intraspecific variation in secondary chemistry has been reported frequently, the levels of genetic variation of many secondary metabolites in forest trees in the context of potential resistance against pests have been rarely investigated. We examined the effect of tree genotype and environment/site on the variation in defensive secondary chemistry of lodgepole pine, Pinus contorta var. latifolia, against the fungus, Grosmannia clavigera (formerly known as Ophiostoma clavigerum), associated with the mountain pine beetle, Dendroctonus ponderosae. Terpenoids were analyzed in phloem samples from 887, 20-yr-old trees originating from 45 half-sibling families planted at two sites. Samples were collected both pre- and post-inoculation with G. clavigera. Significant variation in constitutive and induced terpenoid compounds was attributed to differences among families. The response to the challenge inoculation with G. clavigera was strong for some individual compounds, but primarily for monoterpenoids. Environment (site) also had a significant effect on the accumulation of some compounds, whereas for others, no significant environmental effect occurred. However, for a few compounds significant family x environment interactions were found. These results suggest that P. c. latifolia secondary chemistry is under strong genetic control, but the effects depend on the individual compounds and whether or not they are expressed constitutively or following induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro, R. I., Lewis, K. G., King, J. N., El-Kassaby, Y. A., Brown, G., and Smith, L. D. 2000. Budburst phenology of Sitka spruce and its relationship to white pine weevil attack. For. Ecol. Manag. 127:19–29.

    Article  Google Scholar 

  • Ayres, M. P. and Lombardero, M. J. 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 262:263–286.

    Article  PubMed  CAS  Google Scholar 

  • Becker, W. A. 1975. Manual of Quantitative Genetics. Washington State University, Pullman, WA.

    Google Scholar 

  • Borden, J. H. 1982. Aggregation pheromones, pp 74–139, in J. B. Mitton and K. B. Sturgeon (eds.), Bark Beetles in North American Conifers. University of Texas Press, Austin.

    Google Scholar 

  • Borden, J. H. and Pureswaran, D. S. 2006. Synergistic blends of monoterpenes for mountain pine beetle pheromones. From http://www.freepatentsonline.com/y2006/0198860.html.

  • Borden, J. H., Pureswaran, D. S., and Lafontaine, J. P. 2008. Synergistic blends of monoterpenes for aggregation pheromones of the mountain pine beetle (Coleoptera: Curculionidae). J. Econ. Entomol. 101:1266–1275.

    Article  PubMed  CAS  Google Scholar 

  • Carlow, S. J., Ayers, L., Bailey, A., John, B., Richardson, A., Shepard, B., Woosley, R. S., and Butcher, D. J. 2006. Determination of volatile compounds in foliage of Fraser fir (Abies fraseri) and balsam fir (Abies balsamea). Microchem. J. 83:91–97.

    Article  CAS  Google Scholar 

  • Clark, E. L., Carroll, A. C., and Huber, D. P. W. 2010. Differences in lodgepole pine constitutive terpene profile across a geographic range in British Columbia and the correlation to historical attack by mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Can. Entomol. 142:557–573.

    Article  Google Scholar 

  • Cook, S. P. and Hain, F. P. 1986. Defensive mechanisms of loblolly and shortleaf pine against attack by southern pine beetle, Dendroctonus frontalis Zimmerman, and its fungal associate, Ceratocystis minor (Hedgecock) Hunt. J. Chem. Ecol. 12:1397–1406.

    Article  Google Scholar 

  • Cook, S. P. and Hain, F. P. 1988. Toxicity of host monoterpenes to Dendroctonus frontalis and Ips calligraphus (Coleoptera: Scolytidae). J. Entomol. Sci. 23:287–292.

    CAS  Google Scholar 

  • Falconer, D. S. 1981. Heritability, pp 148–169, in D. S. Falconer (ed.), Introduction to Quantitative Genetics. Longman, London, UK.

    Google Scholar 

  • Fäldt, J., Martin, D., Miller, B., Rawat, S., and Bohlmann, J. 2003. Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 51:119–133.

    Article  PubMed  Google Scholar 

  • Hamilton, J. G., Zangerl, A. R., Delucia, E. H., and Berenbaum, M. R. 2001. The carbon-nutrient balance hypothesis: Its rise and fall. Ecol. Lett. 4:86–95.

    Article  Google Scholar 

  • Hampel, D., Mosandl, A., and Wust, M. 2005. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): Metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Hanover, J. W. 1966. Genetics of terpenes. I. Gene control of monoterpene levels in Pinus monticola Dougl. Heredity 21:73–84.

    Article  CAS  Google Scholar 

  • Herms, D. A. and Mattson, W. J. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67:283–335.

    Article  Google Scholar 

  • Huber, D. P. W. and Bohlmann, J. 2006. The role of terpene synthases in the direct and indirect defense of conifers against insect herbivory and fungal pathogens, pp. 296–308, in S. Tuzun and E. Bent (eds.), Multigenic and Induced Systemic Resistance in Plants. Springer Science, New York.

    Chapter  Google Scholar 

  • Huber, D. P. W., Ralph, S., and Bohlmann, J. 2004. Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers. J. Chem. Ecol. 30:2399–2418.

    Article  PubMed  CAS  Google Scholar 

  • King, J. N., Yanchuk, A. D., Kiss, G. K., and Alfaro, R. I. 1997. Genetic and phenotypic relationships between weevil (Pissodes strobi) resistance and height growth in spruce populations of British Columbia. Can. J. For. Res. 27:732–739.

    Article  Google Scholar 

  • Klepzig, K. D., Smalley, E. B., and Raffa, K. F. 1996. Combined chemical defenses against an insect-fungal complex. J. Chem. Ecol. 22:1367–1388.

    Article  Google Scholar 

  • Klepzig, K. D., Robison, D. J., Fowler, G., Minchin, P. R., Hain, F. P., and Allen, H. L. 2005. Effects of mass inoculation on induced oleoresin response in intensively managed loblolly pine. Tree Physiol. 25:681–688.

    PubMed  Google Scholar 

  • Kopper, B. J., Illman, B. L., Kersten, P. J., Klepzig, K. D., and Raffa, K. F. 2005. Effects of diterpene acids on components of a conifer bark beetle-fungal interaction: Tolerance by Ips pini and sensitivity by its associate Ophiostoma ips. Environ. Entomol. 32:486–493.

    Article  Google Scholar 

  • Krokene, P. and Solheim, H. 1998. Pathogenicity of four blue-stain fungi associated with aggressive and nonaggressive bark beetles. Ecol. Popul. Biol. 88:39–44.

    CAS  Google Scholar 

  • Krokene, P., Solheim, H., and Långström, B. 2000. Fungal infection and mechanical wounding induce disease resistance in Scots pine. Eur. J. Plant Pathol. 106:537–541.

    Article  Google Scholar 

  • Lindgren, B. S., Nordlander, G., and Birgersson, G. 1996. Feeding deterrence of verbenone to the pine weevil, Hylobius abietis (L.) (Col., Curculionidae). J. Appl. Entomol. 120:397–403.

    Article  Google Scholar 

  • Lombardero, M. J., Ayres, M. P., Lorio P. L JR., and Ruel, J. J. 2000. Environmental effects on constitutive and inducible resin defenses of Pinus taeda. Ecol. Lett. 3:329–339.

    Article  Google Scholar 

  • Ott, D. 2010. Characterizing genetic variation of resistance in lodgepole pine to attack by mountain pine beetle and one associated fungus. Thesis.

  • Paine, T. D., Raffa, K. F., and Harrington, T. C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42:179–206.

    Article  PubMed  CAS  Google Scholar 

  • Pureswaran, D. S. and Borden, J. H. 2005. Primary attraction and kairomonal host discrimination in three species of Dendroctonus (Coleoptera: Scolytidae). Agric. For. Ent. 7:219–230.

    Article  Google Scholar 

  • Quencez, C. and Bastien, C. 2001. Genetic variation within and between populations of Pinus sylvestris L. (Scots pine) for susceptibility to Melampsora pinitorqua Rostr. (pine twist rust). Heredity 86:36–44.

    Article  PubMed  CAS  Google Scholar 

  • Raffa, K. F. 2001. Mixed messages across multiple trophic levels: The ecology of bark beetle chemical communication systems. Chemoecology 11:49–65.

    Article  CAS  Google Scholar 

  • Raffa, K. F. and Berryman, A. A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol. Monogr. 53:27–49.

    Article  Google Scholar 

  • Raffa, K. F. and Smalley, E. B. 1988. Response of red and jack pines to inoculation with microbial associates of the pine engraver, Ips pini (Coleoptera: Scolytidae). Can. J. For. Res. 18:581–586.

    Article  Google Scholar 

  • Raffa, K. F. and Smalley, E. B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102:285–295.

    Article  Google Scholar 

  • Roberds, J. H., Strom, B. L., Hain, F. P., Gwaze, D. P., Mckeand, S. E., and Lott, L. H. 2003. Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine. Can. J. For. Res. 33:2469–2476.

    Article  Google Scholar 

  • Rocchini, L. A., Lindgren, B. S., and Bennett, R. G. 2000. Effects of resin flow and monoterpene composition on susceptibility of lodgepole pine to attack by the Douglas-fir pitch moth, Synanthedon novaroensis (Lep., Sesiidae). J. Appl. Entomol. 124:87–92.

    Article  CAS  Google Scholar 

  • Safranyik, L. and Carroll, A. L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests, pp 3–66, in L. Safranyik and A. L. Carroll (eds.), The Mountain Pine Beetle: A Synthesis of its Biology, Management and Impacts on Lodgepole Pine. Natural Resources Canada, Canadian Forestry Service, Victoria, B.C., Canada.

  • Safranyik, L., Shore, T. L., Carroll, A. L., and Linton, D. A. 2004. Bark beetle (Coleoptera: Scolytidae) diversity in spaced and unmanaged mature lodgepole pine (Pinaceae) in southeastern British Columbia. For. Ecol. Manag. 200:23–38.

    Article  Google Scholar 

  • Seybold, S. J., Eager, T., Allen, K., Mcmillin, J., Munson, A. S., and Ross, D. 2004. An improved attractant pheromone for Rocky Mountain populations of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Presentation at the 52nd Annual Meeting of the Entomological Society of America, November 15, 2004, Salt Lake City, UT, http://esa.confex.com/esa/2004/techprogram/paper_16706.htm

  • Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78:23–55.

    Article  PubMed  Google Scholar 

  • Strom, B. L., Goyer, R. A., Ingram, L.L., Jr., Boyd, G. D. L., and Lott, L. H. 2002. Oleoresin characteristics of progeny of loblolly pines that escaped attack by the southern pine beetle. For. Ecol. Manag. 158:169–178.

    Article  Google Scholar 

  • Wallin, K. F. and Raffa, K. F. 2001. Effects of folivory on subcortical plant defenses: Can defense theories predict interguild processes? Ecology 82:1387–1400.

    Article  Google Scholar 

  • Yanchuk, A. D., Murphy, J. C., and Wallin, K. F. 2007. Evaluation of genetic variation of attack and resistance in lodgepole pine in the early stages of a mountain pine beetle outbreak. Tree Genetics and Genomes 4:171–180.

    Article  Google Scholar 

  • Zangerl, A. R. and Berenbaum, M. R. 2004. Genetic variation in primary metabolites of Pastinaca sativa; Can herbivores act as selective agents? J. Chem. Ecol. 30:1985–2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by British Columbia Forest Service grant to K.F.W. and A.D.Y.; support from Oregon State University and University of Vermont and USDA Forest Service to K.F.W. The authors thank Andrea Scott, Marco Hernandez, Matthew Klingenberg, Jeff Selesnic, Erin Clark, Dr. Staffan Lindgren, Dr. Ian Hartley (University of Northern British Columbia) and Bonnie Hooge, Dr. Michael Carlson, Bonnie E. Lee, Nicholas Ukrainetz, John Murphy (B.C. Forest Service) Carolyn Goodwin Kueffner, Marcia Caldwell, Dr. Alan Howard, Drew Cameron, Sarah Pears and Dan Comerford (University of Vermont, Rubenstein School of Environment and Natural Resources) and Dr. Paul Schaberg (USDA Forest Service) for assistance in the field and laboratory. The authors thank Clive Dawson and David Dunn (British Columbia Forest Service Analytical Chemistry lab) for assistance in processing all analytical chemistry samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly F. Wallin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, D.S., Yanchuk, A.D., Huber, D.P.W. et al. Genetic Variation of Lodgepole Pine, Pinus contorta var. latifolia, Chemical and Physical Defenses that Affect Mountain Pine Beetle, Dendroctonus ponderosae, Attack and Tree Mortality. J Chem Ecol 37, 1002–1012 (2011). https://doi.org/10.1007/s10886-011-0003-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-0003-8

Key Words

Navigation