Skip to main content
Log in

Odor Detection in Insects: Volatile Codes

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Insect olfactory systems present models to study interactions between animal genomes and the environment. They have evolved for fast processing of specific odorant blends and for general chemical monitoring. Here, we review molecular and physiological mechanisms in the context of the ecology of chemical signals. Different classes of olfactory receptor neurons (ORNs) detect volatile chemicals with various degrees of specialization. Their sensitivities are determined by an insect-specific family of receptor genes along with other accessory proteins. Whereas moth pheromones are detected by highly specialized neurons, many insects share sensitivities to chemical signals from microbial processes and plant secondary metabolism. We promote a more integrated research approach that links molecular physiology of receptor neurons to the ecology of odorants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almaas, T. J., Christensen, T. A., and Mustaparta, H. 1991. Chemical communication in heliothine moths I. Antennal receptor neurons encode several features of intra- and interspecific odorants in the male corn earworm moth Helicoverpa zea. J. Comp. Physiol A 169:249–258.

    Google Scholar 

  • Altner, H., and Prillinger, L. 1980. Ultrastructure of invertebrate chemo-, thermo- and hygroreceptors and its functional significance. Int. Rev. Cytol 67:69–139.

    Google Scholar 

  • Anderson, P., Hansson, B. S., and Löfqvist, J. 1995. Plant-odour-specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol. Entomol. 20:189–198.

    CAS  Google Scholar 

  • Angeli, S., Ceron, F., Scaloni, A., Monit, M., Monteforti, G., Minocci, A., Petacchi, R., and Pelosi, P. 1999. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur. J. Biochem. 262:745–754.

    PubMed  CAS  Google Scholar 

  • Anton, S., and Rospars, J.-P. 2004. Quantitative analysis of olfactory receptor neuron projections in the antennal lobe of the malaria mosquito, Anopheles gambiae. J. Comp. Neurol 475:315–326.

    PubMed  Google Scholar 

  • Baker, T. C., and Haynes, K. F. 1987. Manoeuvres used by flying male oriental fruit moths to relocate a sex pheromone plume in an experimentally shifted wind-field. Physiol. Entomol 12:263–279.

    Google Scholar 

  • Baker, T. C., and Haynes, K. F. 1989. Field and laboratory electroantennographic measurements of pheromone plume structure correlated with oriental fruit moth behaviour. Physiol. Entomol 14:1–12.

    Google Scholar 

  • Baker, T. C., and Vogt, R. G. 1988. Measured behavioral latency in response to sex-pheromone loss in the large silk moth Antheraea polyphemus. J. Exp. Biol 137:29–38.

    PubMed  CAS  Google Scholar 

  • Baker, T. C., Willis, M. A., Haynes, K. F., and Phelan, P. L. 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol 10:257–265.

    Google Scholar 

  • Baker, T. C., Fadamiro, H. Y., and Cossé, A. A. 1998. Moth uses fine tuning for odor resolution. Nature (London) 393:530.

    CAS  Google Scholar 

  • Baker, T. C., Quero, C., Ochieng, S. A., and Vickers, N. J. 2006. Inheritance of olfactory preferences. II. Olfactory receptor neuron responses from Heliothis subflexa x Heliothis virescens hybrid moths. Brain Behav., Evol 68:75–89.

    CAS  Google Scholar 

  • Bartelt, R. J., Schaner, A. M., and Jackson, L. L. 1985. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol 11:1747–1756.

    CAS  Google Scholar 

  • Bau, J., Justus, K. A., and Cardé, R. T. 2002. Antennal resolution of pheromone plumes in three moth species. J. Insect Physiol 48:433–442.

    PubMed  CAS  Google Scholar 

  • Behrend, K. 1971. Riechen im wasser und in luft bei Dytiscus marginalis L. J. Comp. Physiol 75:108–122.

    Google Scholar 

  • Benton, R., Sachse, S., Michnick, S. W., and Vosshall, L. B. 2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLOS Biol 4:e20.

    PubMed  Google Scholar 

  • Berg, B. G., and Mustaparta, M. 1995. The significance of major pheromone components and interspecific signals as expressed by receptor neurons in the oriental tobacco budworm moth, Helicoverpa assulta. J Comp Physiol A 177:683–694.

    CAS  Google Scholar 

  • Blight, M. M., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1995. Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). J. Chem. Ecol 21:1649–1664.

    CAS  Google Scholar 

  • Boeckh, J., Ernst, K.-D., and Selsam, P. 1987. Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach, pp. 39–43, in S. D. Roper, and J. Atema (eds.). Olfaction and taste IX. Annals New York Academy of Sciences, New York.

  • Bohbot, J., Pitts, R. J., Kwon, H. W., Rutzler, M., Robertson, H. M., and Zwiebel, L. J. 2007. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol 16:525–537.

    PubMed  CAS  Google Scholar 

  • Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. 2005. Insect host location: a volatile situation. Trends Plant Sci. 10:269–274.

    PubMed  CAS  Google Scholar 

  • Buck, L. B., and Axel, R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187.

    PubMed  CAS  Google Scholar 

  • Christensen, T. A., and Hildebrand, J. G. 2002. Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr. Opin. Neurobiol 12:393–399.

    PubMed  CAS  Google Scholar 

  • Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J., and Carlson, J. R. 1999a. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338.

    PubMed  CAS  Google Scholar 

  • Clyne, P. J., Certel, S., De Bruyne, M., Zaslavsky, L., Johnson, W., and Carlson, J. R. 1999b. The odor-specificities of a subset of olfactory receptor neurons are governed by acj6, a POU domain transcription factor. Neuron 22:339–347.

    PubMed  CAS  Google Scholar 

  • Cossé, A. A., Todd, J. L., and Baker, T. C. 1998. Neurons discovered on male Helicoverpa zea antennae that correlate with pheromone-mediated attraction and interspecific antagonism. J. Comp. Physiol. A 182:585–594.

    Google Scholar 

  • Couto, A., Alenius, M., and Dickson, B. J. 2005. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol 15:1535–1547.

    PubMed  CAS  Google Scholar 

  • David, C. T., Kennedy, J. S., Ludlow, A. R., Perry, J. N., and Wall, C. 1982. A re-appraisal of insect flight towards a point source of wind-borne odor. J. Chem. Ecol 8:1207–1215.

    Google Scholar 

  • Davis, E. E. 1984. Development of lactic acid-receptor sensitivity and host-seeking behaviour in newly emerged female Aedes aegypti mosquitoes. J. Insect Physiol 30:211–215.

    CAS  Google Scholar 

  • De Bruyne, M., Clyne, P. J., and Carlson, J. R. 1999. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci 19:4520–4532.

    PubMed  CAS  Google Scholar 

  • De Bruyne, M., Foster, K., and Carlson, J. R. 2001. Odor coding in the Drosophila antenna. Neuron 30:537–552.

    PubMed  CAS  Google Scholar 

  • Dekker, T., Ibba, I., Siju, K. P., Stensmyr, M. C., and Hansson, B. S. 2006. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol 16:101–109.

    PubMed  CAS  Google Scholar 

  • Dobritsa, A., Van Der Goes Van Naters, W. M., Warr, C. G., Steinbrecht, R. A., and Carlson, J. R. 2003. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841.

    PubMed  CAS  Google Scholar 

  • Domingue, M. J., Musto, C. J., Linn, C. E. Jr, Roelofs, W. L., and Baker, T. C. 2007. Evidence of olfactory antagonistic release as a facilitator of evolutionary shifts in pheromone blend usage in Ostrinia spp. (Lepidoptera: Crambidae). J. Insect Physiol 53:488–496.

    PubMed  CAS  Google Scholar 

  • Du, G., and Prestwich, G. D. 1995. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732.

    PubMed  CAS  Google Scholar 

  • Elmore, T., and Smith, D. P. 2001. Putative Drosophila odor receptor OR43b localizes to dendrites of olfactory neurons. Insect Biochem. Mol. Biol 31:791–798.

    PubMed  CAS  Google Scholar 

  • Endo, K., Aoki, T., Yoda, Y., Kimura, K., and Hama, C. 2007. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nature Neurosci 10:153–160.

    PubMed  CAS  Google Scholar 

  • Esslen, J., and Kaissling, K.-E. 1976. Zahl und Verteilung antennalen Sensillen bei der Honigbiene (Apis melifera L.). Zoomorphologie 83:227–251.

    Google Scholar 

  • Faucher, C., Forstreuter, M., Hilker, M., and de Bruyne, M. 2006. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J. Exp. Biol. 209:2739–2748.

    PubMed  CAS  Google Scholar 

  • Firestein, S. 2001. How the olfactory system makes sense of scents. Nature 413:211–218.

    PubMed  CAS  Google Scholar 

  • Fishilevich, E., Domingos, A. I., Asahina, K., Naef, F., Vosshall, L. B., and Louis, M. 2005. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol 15:2086–2096.

    PubMed  CAS  Google Scholar 

  • Fraser, A. M., Mechaber, W. L., and Hildebrand, J. G. 2003. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol. 29:1813–1833.

    PubMed  CAS  Google Scholar 

  • Galindo, K., and Smith, D. P. 2001. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159:1059–1072.

    PubMed  CAS  Google Scholar 

  • Galizia, C. G., and Menzel, R. 2000. Probing the olfactory code. Nature Neurosci 3:853–854.

    PubMed  CAS  Google Scholar 

  • Goldman, A. L., Van Der Goes Van Naters, W. M., Lessing, D., Warr, C. G., and Carlson, J. R. 2005. Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666.

    PubMed  CAS  Google Scholar 

  • Goulding, S. E., Zur Lage, P., and Jarman, A. P. 2000. amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78.

    PubMed  CAS  Google Scholar 

  • Grant, A. J., Wigton, B. E., Aghajanian, J. G., and O’Connell, R. J. 1995. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. J. Comp. Physiol. A Sens. Neural Behav. Physiol 177:389–396.

    CAS  Google Scholar 

  • Grosse-Wilde, E., Svatos, A., and Krieger, J. 2006. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses 31:547–555.

    PubMed  CAS  Google Scholar 

  • Grosse-Wilde, E., Gohl, T., Bouché, E., Breer, H., and Krieger, J. 2007. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci 25:2364–2373.

    PubMed  Google Scholar 

  • Guerin, P. M., Städler, E., and Buser, H. R. 1983. Identification of host plant attractants for the carrot fly, Psilae rosae. J. Chem. Ecol. 9:843–861.

    Google Scholar 

  • Guo, S., and Kim, J. 2007. Molecular evolution of Drosophila odorant receptor genes. Mol. Biol. Evol 24:1198–1207.

    PubMed  CAS  Google Scholar 

  • Gupta, B. P., and Rodrigues, V. 1997. Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes to Cell 2:225–233.

    CAS  Google Scholar 

  • Gupta, B. P., Flores, G. V., Banerjee, U., and Rodrigues, V. 1998. Patterning an epidermal field: Drosophila Lozenge, a member of the AML-1/Runt family of transcription factors, specifies olfactory sense organ type in a dose-dependent manner. Dev.Biol 203:400–411.

    PubMed  CAS  Google Scholar 

  • Hallem, E. A., and Carlson, J. R. 2006. Coding of odors by a receptor repertoire. Cell 125:143–160.

    PubMed  CAS  Google Scholar 

  • Hallem, E. A., Fox, A. N., Zwiebel, L. J., and Carlson, J. R. 2004. Mosquito receptor for human sweat odorant. Nature 427:212–213.

    PubMed  CAS  Google Scholar 

  • Hansson, B. S. 1995. Olfaction in lepidoptera. Cell. Mol. Life Sci 51:1003–1027.

    Article  CAS  Google Scholar 

  • Hansson, B. S., and Baker, T. C. 1991. Differential adaptation rates in a male moth’s sex pheromone receptor neurons. Naturwiss 78:517–520.

    CAS  Google Scholar 

  • Hansson, B. S., and Christensen, T. A. 1999. Functional characteristics of the antennal lobe, pp. 126–162, in B. Hansson (ed.). Insect OlfactionSpringer, Berlin.

    Google Scholar 

  • Hansson, B. S., Toth, M., Löfstedt, C., Szöcs, G., Subchev, M., and Löfqvist, J. 1990. Pheromone variation among eastern European and a western Asian population of the turnip moth Agrotis segetum. J Chem Ecol 16:1611–1622.

    CAS  Google Scholar 

  • Hansson, B. S., Larsson, M., and Leal, W. S. 1999. Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol. Entomol 24:121–126.

    CAS  Google Scholar 

  • Haynes, K. F., and Baker, T. C. 1989. An analysis of anemotactic flight in female moths stimulated by host odour and comparison with the males’ response to sex pheromone. Physiol. Entomol 14:279–289.

    Google Scholar 

  • Heinbockel, T., and Kaissling, K.-E. 1996. Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and (+/−)-linalool. J. Insect Physiol 42:565–578.

    CAS  Google Scholar 

  • Hildebrand, J. G., and Shepherd, G. M. 1997. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631.

    PubMed  CAS  Google Scholar 

  • Hill, C. A., Fox, A. N., Pitts, R. J., Kent, L. B., Tan, P. L., Chrystal, M. A., Cravchik, A., Collins, F. H., Robertson, H. M., and Zwiebel, L. J. 2002. G protein-coupled receptors in Anopheles gambiae. Science 298:176–178.

    PubMed  CAS  Google Scholar 

  • Ishida, Y., and Leal, W. S. 2005. Rapid inactivation of a moth pheromone. Proc. Natl. Acad. Sci. USA 102:14075–14079.

    PubMed  CAS  Google Scholar 

  • Jones, W. D., Nguyen, T.-A. T., Kloss, B., Lee, K. J., and Vosshall, L. B. 2005. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol 15:R119–R121.

    PubMed  CAS  Google Scholar 

  • Jones, W. D., Cayirlioglu, P., Kadow, I. G., and Vosshall, L. B. 2007. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90.

    PubMed  CAS  Google Scholar 

  • Justus, K. A., and Cardé, R. T. 2002. Flight behaviour of two moths, Cadra cautella and Pectinophora gossypiella, in homogeneous clouds of pheromone. Physiol. Entomol 27:67–75.

    Google Scholar 

  • Justus, K. A., Cardé, R. T., and French, A. S. 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol 93:2233–2239.

    PubMed  CAS  Google Scholar 

  • Kaissling, K. E. 1987. R. H. Wright lectures on insect olfaction, in K. Colbow (ed.). Simon Fraser University Press, Burnaby, BC, Canada.

  • Kaissling, K.-E., Meng, L. Z., and Bestmann, H. J. 1989. Responses of the bombykol receptor cells to (Z.E.)-4,6-hexadecadiene and linalool. J. Comp. Physiol. A Sens. Neural Behav. Physiol 165:147–154.

    Google Scholar 

  • Keil, T. 1997. Comparative morphogenesis of sensilla: a review. Int. J. Insect Morphol. Embryol 26:151–160.

    Google Scholar 

  • Kendra, P. E., Montgomery, W. S., Mateo, D. M., Puche, H., Epsky, N. D., and Heath, R. R. 2005. Effect of age on EAG response and attraction of female Anastrepha suspensa (Diptera: Tephritidae) to ammonia and carbon dioxide. Environ. Entomol 34:584–490.

    Article  Google Scholar 

  • Kennedy, J. S., Ludlow, A. R., and Sanders, C. J. 1981. Guidance of flying male moths by wind-borne sex pheromone. Physiol. Entomol 6:395–412.

    Google Scholar 

  • Kiely, A., Authier, A., Kralicek, A., Warr, C. G., and Newcomb, C. D. 2007. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J. Neurosci. Methods 159:189–194.

    PubMed  CAS  Google Scholar 

  • King, J. R., Christensen, T. A., and Hildebrand, J. G. 2000. Response characteristics of an identified, sexually dimorphic olfactory glomerulus. J. Neurosci 20:2391–2399.

    PubMed  CAS  Google Scholar 

  • Kleineidam, C., Romani, R., Tautz, J., and Isidoro, N. 2000. Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. Anthropod Struct. Dev. 29:43–55.

    CAS  Google Scholar 

  • Kreher, S. A., Kwon, J. Y., and Carlson, J. R. 2005. The molecular basis of odor coding in the Drosophila Larva. Neuron 46:445–456.

    PubMed  CAS  Google Scholar 

  • Krieger, J., Raming, K., Dewer, Y., Bette, S., Conzelmann, S., and Breer, H. 2002. A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur. J. Neurosci 16:619–628.

    PubMed  Google Scholar 

  • Krieger, J., Klink, O., Mohl, C., and Raming, K. 2003. A candidate odorant receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A Sens. Neural Behav. Physiol 189:519.

    CAS  Google Scholar 

  • Krieger, J., Grosse-Wilde, E., Gohl, T., Dewer, Y., Raming, K., and Breer, H. 2004. Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA 101:11845–11850.

    PubMed  CAS  Google Scholar 

  • Krieger, J., Grosse-Wilde, E., Gohl, T., and Breer, H. 2005. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci 21:2167–2176.

    PubMed  Google Scholar 

  • Kwon, H. W., Rutzler, M., and Zwiebel, L. J. 2006. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 103:13526–13531.

    PubMed  CAS  Google Scholar 

  • Kwon, J. Y., Dahanukar, A., Weiss, L. A., and Carlson, J. R. 2007. The molecular basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. USA 104:3574–3578.

    PubMed  CAS  Google Scholar 

  • Lacher, V. 1964. Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifira L.). Z. vergl. Physiol. 48:587–623.

    Google Scholar 

  • Larsson, M., Domingos, A. I., Jones, W. D., Chiappa, M. E., Amrein, H., and Vosshall, L. B. 2004. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714.

    PubMed  CAS  Google Scholar 

  • Leal, W. S., Chen, A. M., Ishida, Y., Chiang, V. P., Erickson, M. L., Morgan, T. L., and Tsuruda, J. M. 2005. Kinetics and molecular properties of pheromone binding and release. Proc. Natl. Acad. Sci. USA 102:5386–5391.

    PubMed  CAS  Google Scholar 

  • Linn, C. E. Jr, Campbell, M. G., and Roelofs, W. L. 1986. Male moth sensitivity to multicomponent pheromones: critical role of female-released blend in determining the functional role of components and active space of the pheromone. J. Chem. Ecol 12:659–668.

    CAS  Google Scholar 

  • Linn, C. E. Jr, Musto, C. J., Domingue, M. J., Baker, T. C., and Roelofs, W. L. 2007. Support for (Z)-11-hexadecanal as a pheromone antagonist in Ostrinia nubilalis: flight tunnel and single sensillum studies with a New York population. J. Chem. Ecol 33:909–921.

    PubMed  CAS  Google Scholar 

  • Liu, Y. B., and Haynes, K. F. 1992. Filamentous nature of pheromone plumes protects integrity of signal from background chemical noise in cabbage looper moth, Trichoplusia ni. J.Chem.Ecol 18:299–307.

    CAS  Google Scholar 

  • Löfstedt, C., Hansson, B. S., Dijkerman, H. J., and Herrebout, W. M. 1990. Behavioral and electrophysiological activity of unsaturated analogues of the pheromone tetradecenyl acetate in the small ermine moth Yponomeuta rorellus. Physiol. Entomol 15:47–54.

    Google Scholar 

  • Maibeche-Coisne, M., Nikonov, A. A., Ishida, Y., Jacquin-Joli, E., and Leal, W. S. 2004. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc. Natl. Acad. Sci. USA. 101:11459–11464.

    PubMed  CAS  Google Scholar 

  • Mafra-Neto, A., and Cardé, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.

    CAS  Google Scholar 

  • Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., and Fuyama, F. 2007. Odorant-binding proteins OBP57d and OBP57e affect taste Perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5:5118Epub, May.

    Google Scholar 

  • Mcbride, C. S. 2007. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc. Natl. Acad. Sci. USA 104:4996–5001.

    PubMed  CAS  Google Scholar 

  • Meijerink, J., Braks, M. A. H., and van Loon, J. J. A. 2001. Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. J. Insect Physiol. 47:455–464.

    PubMed  CAS  Google Scholar 

  • Nakagawa, T., Sakurai, T., Nishioka, T., and Touhara, K. 2005. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642.

    PubMed  CAS  Google Scholar 

  • Nikonov, A., and Leal, W. S. 2002. Peripheral coding of sex pheromone and a behavioral antagonist in the Japanese beetle, Popillia japonica. J. Chem. Ecol 28:1075–1089.

    PubMed  CAS  Google Scholar 

  • Nozawa, M., and Nei, M. 2007. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc. Natl. Acad. Sci. USA 104:7122–7127.

    PubMed  CAS  Google Scholar 

  • Ochieng’, S. A., and Baker, T. C. 2002. Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J. Comp. Physiol. A 188:325–333.

    CAS  Google Scholar 

  • Olsson, S. B., Linn, C. E. Jr, and Roelofs, W. L. 2006. The chemosensory basis for behavioral divergence involved in sympatric host shifts. I. Characterizing olfactory receptor neuron classes responding to key host volatiles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:279–288.

    PubMed  Google Scholar 

  • Park, S.-K., Shanbhag, S. R., Dubin, A. E., De Bruyne, M., Wang, Q., Yu, P., Shimoni, N., D’mello, S., Carlson, J. R., Harris, G. L., Steinbrecht, R. A., and Pikielny, C. W. 2002. Inactivation of olfactory sensilla of a single morphological type differentially affects the response of Drosophila to odors. J. Neurobiol 51:248–260.

    PubMed  Google Scholar 

  • Pelosi, P., Zhou, J. J., Ban, L. P., and Calvello, M. 2006. Soluble proteins in insect chemical communication. Cell. Mol. Life. Sci 63:1658–1676.

    PubMed  CAS  Google Scholar 

  • Persoons, C. J., Verwiel, P. E., Ritter, F. J., Talman, E., Nooijen, P. J. F., and Nooijen, W. J. 1976. Sex pheromones of the American cockroach, Periplaneta americana: A tentative. structure of periplanone B. Tetrahedron Lett 24:2055–2058.

    Google Scholar 

  • Phelan, P. L. 1997. Genetics and phylogenetics in the evolution of sex pheromones, pp. 563–579, in R. T. Cardé, and A. K. Minks (eds.). Insect Pheromone Research: New DirectionsChapman & Hall, New York.

    Google Scholar 

  • Quero, C., Fadamiro, H. Y., and Baker, T. C. 2001. Responses of male Helicoverpa zea to single pulses of sex pheromone and behavioural antagonist. Physiol. Entomol 26:106–115.

    Google Scholar 

  • Raghu, S. 2004. Functional significance of phytochemical lures to dacine fruit flies (Diptera: Tephritidae): an ecological and evolutionary synthesis. Bull. Entomol. Res 94:385–399.

    PubMed  CAS  Google Scholar 

  • Ray, K., and Rodrigues, V. 1995. Cellular events during development of olfactory sense organs in Drosophila melanogaster. Dev. Biol 167:426–438.

    PubMed  CAS  Google Scholar 

  • Ray, A., Van Der Goes Van Naters, W. M., Shiraiwa, T., and Carlson, J. R. 2007. Mechanisms of odor receptor gene choice in Drosophila. Neuron 53:553–569.

    Google Scholar 

  • Roelofs, W. L., and Rooney, A. P. 2003. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc. Nat. Acad. Sci 100:9179–9184.

    PubMed  CAS  Google Scholar 

  • Roelofs, W. L., Liu, W., Hao, G., Jiao, H., Rooney, A. P., and Linn, C. E. Jr 2002. Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci. USA 99:13621–13626.

    PubMed  CAS  Google Scholar 

  • Robertson, H. M., and Wanner, K. W. 2006. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403.

    PubMed  CAS  Google Scholar 

  • Robertson, H. M., Warr, C. G., and Carlson, J. R. 2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100:14537–14542.

    PubMed  CAS  Google Scholar 

  • Roessingh, P., Sen, X., and Menken, S. B. J. 2007. Olfactory receptors on the maxillary palps of small ermine moth larvae: Evolutionary history of benzaldehyde sensitivity. J. Comp. Physiol. A Sens. Neural Behav. Physiol 193:635–647.

    CAS  Google Scholar 

  • Rostelien, T., Stranden, M., Borg-Karlson, A. K., and Mustaparta, H. 2005. Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:443–461.

    PubMed  CAS  Google Scholar 

  • Rumbo, E. R., and Kaissling, K.-E. 1989. Temporal resolution of odor pulses by three types of pheromone receptor cells in Antheraea polyphemus. J Comp Physiol A 165:281–291.

    Google Scholar 

  • Sakurai, T., Nakagawa, T., Mitsuno, H., Mori, H., Endo, Y., Anoue, S., Yasukochi, Y., Touhara, K., and Nishioka, T. 2004. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA 101:16653–16658.

    PubMed  CAS  Google Scholar 

  • Sandler, B. H., Nikinova, L., Leal, W. S., and Clardy, J. 2000. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol 7:143–151.

    PubMed  CAS  Google Scholar 

  • Sass, H. 1976. Zur nervoesen codierung von geruchreizen bei Periplaneta americana. J. Comp. Physiol. A Sens. Neural Behav. Physiol 107:49–65.

    Google Scholar 

  • Sato, K. ,Pellegrin, M., Nakagawa, T., Vosshall, L. B., and Touhara, K. 2008. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006.

    PubMed  CAS  Google Scholar 

  • Shanbhag, S. R., Müller, B., and Steinbrecht, R. A. 2000. Atlas of olfactory organs of Drosophila melanogaster 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct. Dev 29:211–229.

    PubMed  CAS  Google Scholar 

  • Shanbhag, S. R., Hekmat-Scafe, D., Kim, M. S., Park, S. K., Carlson, J. R., Pikielny, C., Smith, D. P., and Steinbrecht, R. A. 2001. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc. Res. Tech 55:297–306.

    PubMed  CAS  Google Scholar 

  • Shields, V. D. C., and Hildebrand, J. G. 2001. Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds. J. Comp. Physiol. A Sens. Neural Behav. Physiol 186:1135–1151.

    CAS  Google Scholar 

  • Stange, G. 1992. High resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth Heliothis armigera (Lepidoptera:Noctuidae). J. Comp. Physiol. A Sens. Neural Behav. Physiol 171:317–324.

    Google Scholar 

  • Stange, G., and Stowe, S. 1999. Carbon-dioxide sensing structures in terrestrial arthropods. Microsc. Res. Tech 47:416–427.

    PubMed  CAS  Google Scholar 

  • Steinbrecht, R. A. 1997. Pore structures in insect olfactory sensilla: A review of data and concepts. Int. J. Insect Morphol. Embryol 26:229–245.

    Google Scholar 

  • Steinbrecht, R. A. 1999. Olfactory receptors, pp. 156–176, in E. Eguchi, and Y. Tominaga (eds.). Atlas of arthropod sensory receptorsSpringer-Verlag, Tokyo.

    Google Scholar 

  • Steiner, S., Erdmann, D., Steidle, J. L. M., and Ruther, J. 2007. Host habitat assessment by a parasitoid using fungal volatiles. BMC Frontiers Zool 4:3.

    Google Scholar 

  • Stensmyr, M. C., Larsson, M. C., Bice, S., and Hansson, B. S. 2001. Detection of fruit- and flower-emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer Pachnoda marginata (Coleoptera: Cetoniinae). J Comp Physiol [A] 187:509–519.

    CAS  Google Scholar 

  • Stensmyr, M. C., Dekker, T., and Hansson, B. S. 2003. Evolution of the olfactory code in the Drosophila melanogaster subgroup. Proc. Natl. Acad. Sci. USA 270:2333–2340.

    Google Scholar 

  • Störtkuhl, K. F., and Kettler, R. 2001. Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98:9381–9385.

    PubMed  Google Scholar 

  • Stranden, M., Liblikas, I., Konig, W. A., Almaas, T. J., Borg-Karlson, A. K., and Mustaparta, H. 2003. (−)-Germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:563–577Epub 2003 Jun 25.

    PubMed  CAS  Google Scholar 

  • Suh, G. S., Wong, A. M., Hergarden, A. C., Wang, J. W., Simon, A. F., Benzer, S., Axel, R., and Anderson, D. J. 2004. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859Epub 2004 Sep 15.

    PubMed  CAS  Google Scholar 

  • Syed, Z., and Leal, W. S. 2007. Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus. Chem Senses 32:727–7382007.

    PubMed  CAS  Google Scholar 

  • Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D. A., and Leal, W. S. 2006. Pheromone reception in fruit flies expressing a moth’s odorant receptor. Proc. Natl. Acad. Sci. USA 103:16538–16543.

    PubMed  CAS  Google Scholar 

  • Taneja, J., and Guerin, P. M. 1995. Oriented responses of the triatomine bugs Rhodnius prolixus and Triatoma infestans to vertebrate odours on a servosphere. J. Comp. Physiol. A Sens. Neural Behav. Physiol 176:455–464.

    Google Scholar 

  • Takken, W., and Knols, B. G. J. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol 44:131–157.

    PubMed  CAS  Google Scholar 

  • Todd, J. L., Baker, and T. C. 1999. Function of peripheral olfactory organs, pp. 67–96, in B. S. Hansson (ed.). Insect olfactionSpringer-Verlag, Berlin.

    Google Scholar 

  • Tunstall, N. E., Sirey, T., Newcomb, R. D., and Warr, C. G. 2007. Selective pressures on Drosophila chemosensory receptor genes. J. Mol. Evol 64:628–636.

    PubMed  CAS  Google Scholar 

  • Turlings, T. C., and Ton, J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9:421–427.

    PubMed  Google Scholar 

  • Van Der Goes Van Naters, W. M., and Carlson, J. R. 2007. Receptors and neurons for fly odors in Drosophila. Curr. Biol 17:606–612.

    PubMed  CAS  Google Scholar 

  • Van Der Goes Van Naters, W. M., Bootsma, L., Den Otter, C. J., and Belemtougri, R. G. 1996. Search for tsetse attractants: A structure–activity study on 1-octen-3-ol in Glossina fuscipes fuscipes (Diptera: Glossinidae). J. Chem. Ecol 22:343–355.

    CAS  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Nat. Acad Sci. USA 91:5756–5760.

    PubMed  CAS  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1996. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens(F.) males. J. Comp. Physiol. A 178:831–847.

    Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1997. Chemical communication in heliothine moths. VII. Correlation between diminished responses to point-source plumes and single filaments similarly tainted with a behavioral antagonist. J. Comp. Physiol 180:523–536.

    CAS  Google Scholar 

  • Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. 2001. How do odour plume dynamics influence the brain’s olfactory code. Nature 410:466–470.

    PubMed  CAS  Google Scholar 

  • Visser, J. H. 1986. Host odour perception in phytophagous insects. Annu. Rev. Entomol 31:121–144.

    Google Scholar 

  • Vogt, R. G. 2005. Molecular basis of pheromone detection in insects, pp. 753–804, in L. I. Gilbert, K. Iatro, and S. Gill (eds.). Comprehensive insect physiology, biochemistry, pharmacology and molecular biology. Volume 3Endocrinology. Elsevier, London.

    Google Scholar 

  • Vogt, R. G., and Riddiford, L. M. 1981. Pheromone binding and inactivation by moth antennae. Nature 293:161–163.

    PubMed  CAS  Google Scholar 

  • Vogt, R. G., Prestwich, G. D., and Lerner, M. R. 1991. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J. Neurobiol 22:74–84.

    PubMed  CAS  Google Scholar 

  • Vosshall, L. B., and Stocker, R. F. 2007. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci 30:505–533.

    PubMed  CAS  Google Scholar 

  • Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., and Axel, R. 1999. A spatial map of the olfactory receptor expression in the Drosophila antenna. Cell 96:725–736.

    PubMed  CAS  Google Scholar 

  • Wanner, K. W., Anderson, A. R., Trowell, S. C., Theilmann, D. A., Robertson, H. M., and Newcomb, R. D. 2007. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol 16:107–119.

    PubMed  CAS  Google Scholar 

  • Wetzel, C. H., Behrendt, H.-J., Gisselmannn, G., Störtkuhl, K. F., Hovemann, B. T., and Hatt, H. 2001. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl. Acad. Sci. USA 98:9377–9380.

    PubMed  CAS  Google Scholar 

  • Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M.C., Heller, R., Heinemann, S.H., and Hansson, B. S. 2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011.

    PubMed  CAS  Google Scholar 

  • Wistrand, M., Käll, L., and Sonnhammer, E. L. 2006. A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15:509–521.

    PubMed  CAS  Google Scholar 

  • Witzgall, P., and Priesner, E. 1991. Wind-tunnel study on attraction inhibitor in male Coleophora laricella Hbn. (Lepidoptera:Coleophoridae). J. Chem. Ecol 17:1355–1362.

    CAS  Google Scholar 

  • Xu, P., Atkinson, R., Jones, D. N., and Smith, D. P. 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200.

    PubMed  CAS  Google Scholar 

  • Yao, C. A., Ignell, R., and Carlson, J. R. 2005. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci 25:8359–8367.

    PubMed  CAS  Google Scholar 

  • Zacharuk, R. Y. 1985. Antennae and sensilla, pp. 1–69, in G. A. Kerkut, and L. I. Gilbert (eds.). Comprehensive insect physiology biochemistry and pharmacology, vol.6, Nervous system: sensory. Pergamon press, Oxford.

    Google Scholar 

  • Zacharuk, R. Y., and Shields, V. D. C. 1991. Sensilla of immature insects. Annu. Rev. Entomol 36:331–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. de Bruyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bruyne, M., Baker, T.C. Odor Detection in Insects: Volatile Codes. J Chem Ecol 34, 882–897 (2008). https://doi.org/10.1007/s10886-008-9485-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9485-4

Keywords

Navigation