Skip to main content
Log in

Seasonal Variation in Volatile Compound Profiles of Preen Gland Secretions of the Dark-eyed Junco (Junco hyemalis)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Quantitative stir bar sorptive extraction methodology, followed by gas chromatography-mass spectrometry (GC-MS) and element-specific atomic emission detection (AED) were utilized to analyze seasonal changes in volatile components of preen oil secretions in Junco hyemalis. Juncos were held in long days to simulate breeding conditions, or short days to simulate nonbreeding conditions. Linear alcohols (C10–C18) were the major volatile compounds found in preen oil, and in both sexes their levels were higher when birds were housed on long as opposed to short days. Methylketones were found at lower levels, but were enhanced in both sexes during long days. Levels of 2-tridecanone, 2-tetradecanone, and 2-pentadecanone were also greater on long days, but only in males. Among carboxylic acids (C12, C14, and C16), linear but not branched acids showed some differences between the breeding and nonbreeding conditions, although the individual variation for acidic compounds was large. Qualitatively, more sulfur-containing compounds were found in males than females during the breeding season. Functionally, the large increase in linear alcohols in male and female preen oil during the breeding season may be an indication of altered lipid biosynthesis, which might signal reproductive readiness. Linear alcohols might also facilitate junco odor blending with plant volatiles in the habitat to distract mammalian predators. Some of the volatile compounds from preen oil, including linear alcohols, were also found on the wing feather surface, along with additional compounds that could have been of either metabolic or environmental origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apanius, V., Penn, D., Slev, P., Ruff, L. R., and Potts, W. K. 1997. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17:179–224.

    PubMed  CAS  Google Scholar 

  • Brown, J. L. and Eklund, A. 1994. Kin recognition and the major histocompatibility complex: An integrative review. Am. Nat. 143:435–461.

    Article  Google Scholar 

  • Bohnet, S., Rogers, L., Sasaki, G., and Kolattukydy, P. E. 1991. Estradiol induces proliferation of peroxisome-like microbodies and the production of 3-hydroxy fatty acid diesters, the female pheromones, in the uropygial glands of male and female mallards. J. Biol. Chem. 266:9795–9804.

    PubMed  CAS  Google Scholar 

  • Bonadonna, F. and Nevitt, G. A. 2004. Partner-specific odor recognition in an Antarctic seabird. Science 306:835.

    Article  PubMed  CAS  Google Scholar 

  • Burger, J. 1994. Metals in avian feathers: Bioindicators of environmental pollution. Rev. Environ. Toxicol. 5:203–311.

    CAS  Google Scholar 

  • Burger, B. V., Reiter, B., Borzyk, O., and du Plessis, M. A. 2004. Avian exocrine secretions. I. chemical characterization of the volatile fraction of the uropygial secretion of the green woodhoopoe, Phoeniculus purpureus. J. Chem. Ecol. 30:1603–1611.

    Article  PubMed  CAS  Google Scholar 

  • Chatzivasileiadis, E. A., Boon, J. J., and Sabelis, M. W. 1999. Accumulation and turnover of 2-tridecanone in Tetranychus urticae and its consequences for resistance of wild and cultivated tomatoes. Exp. Appl. Acarol. 23:1011–1021.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J. B. and Russell, D. W. 2004a. Mammalian wax biosynthesis. I. Identification of two fatty acyl-coenzyme A reductases with different substrate specifications and tissue distributions. J. Biol. Chem. 279:37789–37797.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J. B. and Russell, D. W. 2004b. Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J. Biol. Chem. 279:37798–37807.

    Article  PubMed  CAS  Google Scholar 

  • Clotfelter, E. D., O’Neal, D. M., Gaudioso, J. M., Casto, J. M., Parker-Renga, I. M., Snajdr, E. A., Duffy, D. L., Nolan, V. Jr., and Ketterson, E. D. 2004. Consequences of elevating plasma testosterone in females of a socially monogamous songbird: Evidence of constraints on male evolution? Horm. Behav. 46:171–178.

    Article  PubMed  CAS  Google Scholar 

  • Dekker, M. H. A., Piersma, T., and Sinninghe Damsté, J. S. 2000. Molecular analysis of intact preen waxes of Calidris canutus (Aves: Scolopacidae) by gas chromatography/mass spectrometry. Lipids 35:533–541.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, H. D. III, Jones, T. H., and Conner, W. E. 2001. Heteropteran chemical repellents identified in the citrus odor of a seabird (crested auklet: Aethia cristatella): evolutionary convergence in chemical ecology. Naturwissenschaften 88:330–332.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, H. D. III, Jones, T. H., Conner, W. E., and Day, J. F. 2005. Chemical odorant of colonial seabird repels mosquitoes. J. Med. Entomol. 42:647–651.

    Article  PubMed  CAS  Google Scholar 

  • Ekblom, R., Særher, S. A., Grahn, M., Fiske, P., Kålås, J. A., and Höglund, J. 2004. Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol. Ecol. 13:3821–3828.

    Article  PubMed  CAS  Google Scholar 

  • Elder, W. H. 1954. The oil gland of birds. Wilson Bull. 66:6–31.

    Google Scholar 

  • Elowson, A. M. 1984. Spread-wing postures and the water repellency of feathers: A test of Rijke’s hypothesis. Auk 101:371–383.

    Google Scholar 

  • Fabricius, E. 1959. What makes plumage waterproof? Wildfowl Trust Reprints 10:105–113.

    Google Scholar 

  • Freeman-Gallant, C. R., Meguerdichian, M., Wheelwright, N. T., and Sollecito, S. V. 2003. Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol. Ecol. 12:3077–3083.

    Article  PubMed  Google Scholar 

  • Hagelin, J. H., Jones, I. L., and Rasmussen, L. E. L. 2003. A tangerine-scented social odour in a monogamous seabird. Proc. R. Soc. (London) B 270:1323–1329.

    Article  Google Scholar 

  • Jacob, J., Eigener, U., and Hoppe, U. 1997. The structure of preen gland waxes from pelicaniform birds containing 3,7-dimethyloctan-1-ol: An active ingredient against dermatophytes. Zeitschrift für Naturforschung 52:114–123.

    CAS  Google Scholar 

  • Ketterson, E. D., Nolan, V. Jr., and Sandell, M. 2005. Testosterone in females: A constraint on the evolution of sexual dimorphism? Am. Nat. 166:S85–S98.

    Article  PubMed  Google Scholar 

  • Kolattukudy, P. E. 1970. Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry 9:1095–1102.

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy, P. E., Bohnet, S., and Rogers, L. 1987. Diesters of 3-hydroxy fatty acids produced by the uropygial glands of female mallards uniquely during the mating season. J. Lipid Res. 28:582–588.

    PubMed  CAS  Google Scholar 

  • Kubo, I., Muroi, H., and Kubo, A. 1993. Antibacterial activity of long-chain alcohols against Streptococcus mutans. J. Agric. Food Chem. 41:2447–2450.

    Article  CAS  Google Scholar 

  • Kubo, I., Muroi, H., and Kubo, A. 1995. Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg. Med. Chem. 3:873–880.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, I., Fujita, T., Kubo, A., and Fujita, K. I. 2003. Modes of antifungal action of alkanols against Saccharomyces cerevisiae. Bioorg. Med. Chem. 11:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  • McDowell, P. G., Lwande, W., Deans, S. G., and Waterman, P. G. 1988. Volatile resin exudates from stem bark of Commiphora rostrata: Potential role in plant defence. Phytochemistry 27:2519–2521.

    Article  CAS  Google Scholar 

  • Menon, G. K. and Menon, J. 2000. Avian epidermal lipids: functional considerations and relationship to feathering. Am. Zool. 40:540–552.

    Article  CAS  Google Scholar 

  • Miller, M. M., Wang, C., Parisini, E., Coletta, R. D., Goto, R. M., Lee, S. Y., Barral, D. C., Townes, M., Roura-Mir, C., Ford, H. L., Brenner, M. B., and Dascher, C. C. 2005. Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc. Natl. Acad. Sci. U.S.A. 102:8674–8679.

    Article  PubMed  CAS  Google Scholar 

  • Moyer, B. R., Rock, A. N., and Clayton, D. H. 2003. Experimental test of the importance of preen oil in rock doves (Columbia livia). Auk 120:490–496.

    Article  Google Scholar 

  • Nicolaides, N. 1974. Skin lipids: Their biochemical uniqueness. Science 186:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, V. Jr., Ketterson, E. D., Cristol, D. A., Rogers, C. M., Clotfelter, E. D., Titus, R. C., Schoech, S. J., and Snajdr, E. 2002. Dark-eyed junco: Junco hyemalis. Birds N. Am. 716:1–44.

    Google Scholar 

  • Odham, G. 1965. Feather waxes of birds. III. The chemical composition of the wax in the free flowing secretion from the preen gland of the mute swan (Gygnus olor). Arkiv foer Kemi 23:431–451.

    CAS  Google Scholar 

  • Odham, G. 1967. Studies of feather waxes of birds. IV. Further investigation of the free flowing preen gland secretion from species within the family of Anatidae. Arkiv foer Kemi 27:263–288.

    CAS  Google Scholar 

  • Penn, D. and Potts, W. 1998. Untrained mice distinguish MHC-determined odors. Physiol. Behav. 64:235–243.

    Article  PubMed  CAS  Google Scholar 

  • Penn, D. and Potts, W. 1999. The evolution of mating preferences and major histocompatibility genes. Am. Nat. 153:145–164.

    Article  Google Scholar 

  • Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., Novotny, M. V., Dixon, S. J., Xu, Y., and Brereton, R. G. 2006. Individual and gender fingerprints in human body odour. J. R. Soc. Interface. (in press).

  • Porcelli, S. A., and Modlin, R. L. 1999. The CD1 system: Antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunolol. 17:297–329.

    Article  CAS  Google Scholar 

  • Potts, W. K. and Wakeland, E. K. 1990. Evolution of diversity at the major histocompatibility complex. Trends Ecol. Evol. 5:181–187.

    Article  Google Scholar 

  • Reneerkens, J., Piersma, T., and Sinninghe Damsté, J. S. 2002. Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? Proc. R. Soc. Lond., B 269:2135–2139.

    Article  Google Scholar 

  • Roper, T. J. 1999. Olfaction in birds. Adv. Study Behav. 28:247–332.

    Article  Google Scholar 

  • Salomonsen, J., Rathman Sørensen, M., Marston, D. A., Rogers, S. L., Collen, T., Van Hateren, A., Smith, A. L., Beal, R. K., Skjødt, K., and Kaufman, J. 2005. Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc. Natl. Acad. Sci. 102:8668–8673.

    Article  PubMed  CAS  Google Scholar 

  • Schoech, S. J., Ketterson, E. D., Nolan, V. Jr., Sharp, P. J., and Buntin, J. D. 1998. The effect of exogenous testosterone on parental behavior, plasma prolactin and prolactin binding sites in dark-eyed juncos. Horm. Behav. 34:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Soini, H. A., Bruce, K. E., Wiesler, D., David, F., Sandra, P., and Novotny, M. V. 2005. Stir bar sorptive extraction: A new comprehensive sampling technique for determination of chemical signal profiles from biological media. J. Chem. Ecol. 31:377–392.

    Article  PubMed  CAS  Google Scholar 

  • Soini, H. A., Bruce, K. E., Klouckova, I., Brereton, R. G., Penn, D. J., and Novotny, M. V. 2006. In-situ surface sampling of biological objects and preconcentration of their volatiles for chromatographic analysis. Anal. Chem. 78:7161–7168.

    Article  PubMed  CAS  Google Scholar 

  • Spehr, M., Kelliher, K. R., Li, X.-H., Boehm, T., Leinders-Zufall, T., and Zufall, F. 2006. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 15:1961–1970.

    Article  CAS  Google Scholar 

  • Stettenheim, P. 1972. The integument of birds, pp. 1–63, in D. S Farner and J. R. King (eds.). Avian Biology, Vol. II. Academic Press, New York.

    Google Scholar 

  • Veerle, J., Dauwe, T., Pinxten, R., Bervoets, L., Blust, R., and Eens, M. 2004. The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. J. Environ. Monit. 6:356–360.

    Article  PubMed  CAS  Google Scholar 

  • Vioque, J. and Kolattukudy, P. E. 1997. Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.). Arch. Biochem. Biophys. 340:64–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly sponsored by the METACyt Initiative at Indiana University, and the Lilly Chemistry Alumni Chair funds (to M.V.N.) and the National Science Foundation grant NSF BSC 05-19211, 2005–2008 (to E.D.K.). We thank Mr. Michael Wigen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milos V. Novotny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soini, H.A., Schrock, S.E., Bruce, K.E. et al. Seasonal Variation in Volatile Compound Profiles of Preen Gland Secretions of the Dark-eyed Junco (Junco hyemalis). J Chem Ecol 33, 183–198 (2007). https://doi.org/10.1007/s10886-006-9210-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9210-0

Keywords

Navigation