, Volume 31, Issue 1, pp 123-138

FORAGING IN CHEMICALLY DIVERSE ENVIRONMENTS: ENERGY, PROTEIN, AND ALTERNATIVE FOODS INFLUENCE INGESTION OF PLANT SECONDARY METABOLITES BY LAMBS

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Interactions among nutrients and plant secondary metabolites (PSM) may influence how herbivores mix their diets and use food resources. We determined intake of a food containing a mix of terpenoids identified in sagebrush (Artemisia tridentata) when present in isoenergetic diets of increasing concentrations of protein (6, 9, 15, or 21% CP) or in isonitrogenous diets of increasing concentrations of energy (2.17, 2.55, 3.30, or 3.53 Mcal/kg). Lambs were offered choices between those diets with or without terpenes or between diets with terpenes and alfalfa hay. Intake of the diets with terpenes was lowest with the lowest concentrations of protein (6%) and energy (2.17 Mcal/kg) in the diets, and highest with diets of 15% CP and 3.53~Mcal/kg. In contrast, when terpenes were absent from the diets, lambs consumed similar amounts of all four diets with different concentrations of protein, and more of the diets with intermediate amounts of energy. When given a choice between the diet with or without terpenes, lambs preferred the diet without terpenes. When lambs were offered choices between terpene-containing diets and alfalfa, energy and protein concentrations influenced the amount of terpenes animals ingested. Energy densities higher than alfalfa, and protein concentrations higher than 6%, increased intake of the terpene-containing diet. Thus, the nutritional environment interacted with terpenes to influence preference such that lambs offered diets of higher energy or protein concentration ate more terpenes when forced, but not when offered alternative food without terpenes. The nutrients supplied by a plant and its neighbors likely influence how much PSM an animal can ingest, which in turn may affect the dynamics of plant communities, and the distribution of herbivores in a landscape. We discuss implications of these findings for traditional views of grazing refuges and varied diets in herbivores.