Skip to main content
Log in

Global Stability of a Competitive Model with State-Dependent Delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This article deals with a stage-structured model with state-dependent delay which is assumed to be an increasing function of the population density with lower and upper bound. Firstly, according to the principle of linearized stability (Theorem 3.6, Hartung et al. in Handbook of differential equations: ordinary differential equations, 2006), we study the local stability of system in combination with the positivity and boundedness of solutions. By using the comparison principle obtained and an iterative method, the global stability of the equilibria is completely analyzed. Our results show how the interaction between interspecific and intraspecific competition affects the coexistence of both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Das, K., Ray, S.: Effect of delay on nutrient cycling in phytoplankton–zooplankton interactions in estuarine system. Ecol. model. 215, 69–76 (2008)

    Article  Google Scholar 

  2. Kuang, Y.: Delay Differential Equation with Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  3. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  4. Yang, Y.: Hopf bifurcation in a two-competitor, one-prey system with time delay. Appl. Math. Comput. 214, 228–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barclay, H., Driessche, P.: A model for a single species with two life history stages and added mortality. Ecol. Model 11, 157–166 (1980)

    Article  Google Scholar 

  6. Gurney, W., Nisbet, R., Lawton, J.: The systematic formulation of tractible single species population models incorporating age structure. J. Anim. Ecol. 52, 479–485 (1983)

    Article  Google Scholar 

  7. Tognetti, K.: The two stage stochastic model. Math. Biosci. 25, 195–204 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Landahl, H., Hanson, B.: A three stage population model with cannibalism. Bull. Math. Biol. 37, 11–17 (1975)

    Article  MATH  Google Scholar 

  9. Wood, S., Blythe, S., Gurney, W., Nisbet, R.: Instability in mortality estimation schemes related to stage-structure population models. IMA J. Math. Appl. Med. Biol. 6, 47–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aiello, W., Freedman, H., Wu, J.: Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math 52, 855–869 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gambell, R.: Birds and mammals-Antarctic whales. In: Bonner, W., Walton, D. (eds.) Antarctica, pp. 223–241. Pergamon Press, New York (1985)

    Chapter  Google Scholar 

  12. Andrewartha, H., Birch, L.: The Distribution and Abundance of Animals, p. 370. University of Chicago Press, Chicago, IL (1954)

    Google Scholar 

  13. Zaghrout, A., Attalah, S.: Analysis of a model of stage-structured population dynamics growth with state-dependent time delay. Appl. Math. Comput. 77, 185–194 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Al-Omari, J., Gourley, S.: Dynamics of a stage-structured population model incorporating a state-dependent maturation delay. Nonlinear Anal. Real World Appl. 6, 13–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Al-Omari, J., Tallafha, A.: Modelling and analysis of stage-structured population model with state-dependent maturation delay and harvesting. Int. J. Math. Anal. 1, 391–407 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Adimy, M., Crauste, F., Hbid, M., Qesmi, R.: Stability and Hopf bifurcation for a cell population model with state-dependent delay. SIAM J. Appl. Math. 70, 1611–1633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, Q., Zhao, X.: Global dynamics of a state-dependent delay model with unimodal feedback. J. Math. Anal. Appl. 399, 133–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gause, G.: The Struggle for Existence. Williams and Wilkins, Baltimore (1934)

    Book  MATH  Google Scholar 

  19. Kareiva, P.: Renewing the dialogue between theory and experiments in population ecology. In: Roughgarden, J., May, R., Levin, S. (eds.) Perspectives in Ecological Theory, pp. 68–88. Princeton University Press, Princeton (1989)

    Google Scholar 

  20. Gopalsamy, K.: Time lags and global stability in two-species competition. Bull. Math. Biol. 42, 729–737 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bartoszewski, Z., Jackiewicz, Z., Kuang, Y.: Numerical solution of threshold problems in epidemics and population dynamics. J. Comput. Appl. Math. 279, 40–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith, H., Kuang, Y.: Periodic solutions of delay differential equations of threshold-type delay. In: Graef, Hale, (eds.) Oscillation and Dynamics in Delay Equations. Contemporary Mathematics, vol. 129, pp. 153–176. AMS, Providence, RI (1992)

    Chapter  Google Scholar 

  23. Kuang, Y.: Delay differential equations. In: Hastings, A., Gross, L.J. (eds.) Encyclopedia of Theoretical Ecology, pp. 163–166. University of California Press, Berkeley, CA (2012)

    Google Scholar 

  24. Al-Omari, J., Gourley, S.: Stability and traveling fronts in Lotka–Vloterra competition models with stage structure. SIAM J. Appl. Math. 63, 2063–2086 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hartung, F., Krisztin, T., Walther, H., Wu, J.: Functional differential equations with state-dependent delay: theory and applications. In: Canada, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, pp. 435–545. Elsevier Science B. V., North-Holland, Amsterdam (2006)

    Chapter  Google Scholar 

  26. Walther, H.: The solution manifold and \(C^1\)-smoothness of solution operators for differential equations with state dependent delay. J. Differ. Equ. 195, 46–65 (2003)

    Article  MATH  Google Scholar 

  27. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer, Dordrecht (1992)

    Book  MATH  Google Scholar 

  28. Hirsch, W., Hanisch, H., Gabriel, J.: Differential equations models of some parasitic infections, methods for the study of asymptotic behavior. Comm. Pure. Appl. Math. 38, 733–753 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martin, R., Smith, H.: Abstract functional differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to the critical comments and invaluable suggestions made by anonymous honorable reviewers. This work is supported by the National Nature Science Foundation of China, RFDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Yuan, R., Pei, Y. et al. Global Stability of a Competitive Model with State-Dependent Delay. J Dyn Diff Equat 29, 501–521 (2017). https://doi.org/10.1007/s10884-015-9475-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9475-5

Keywords

Navigation