Skip to main content
Log in

Comparison Theorem for Stochastic Functional Differential Equations and Applications

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The comparison theorem is proved for stochastic functional differential equations whose drift term satisfies the quasimonotone condition and diffusion term is independent of delay. Application is given to stochastic neutral networks with delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Deng, S., Zhang, W.: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165(3), 599–612 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Assing, S.: Comparison of systems of stochastic partial differential equations. Stoch. Proc. Appl. 82(2), 259–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buckdahn, R., Pardoux, E.: Monotonicity methods for white noise driven SPDE’s. In: Pinsky, M. (ed.) Diffusion Processes and Related Problems in Analysis, pp. 219–233. Birkh\(\ddot{a}\)user, Basel (1990)

  4. Buckdahn, R., Peng, S.: Ergodic backward stochastic differential equations and associated partial differential equations. Prog. Probab. 45, 73–85 (1999)

    MATH  Google Scholar 

  5. Chueshov, I.: Monotone Random Systems: Theory and Applications. Lecture Notes in Mathematics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  6. Chueshov, I., Scheutzow, M.: Invariance and monotonicity for stocastic delay differential equations. Discrete Contin. Dyn. Syst. Ser. B 18(6), 1533–1554 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. Theory Relat. Fields 95(1), 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geiß, C., Manthey, R.: Comparison theorems for stochastic differential equations in finite and infinite dimensions. Stoch. Proc. Appl. 53(1), 23–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hajek, B.: Mean stochastic comparison of diffusions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 68, 315–329 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ikeda, N., Watanabe, S.: A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 14(3), 619–633 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Noth-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  12. Imkeller, P., Schmalfuss, B.: The conjugacy of stochastic and random differential equations and the existence of global attractors. J. Dyn. Differ. Equ. 13(2), 215–249 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, Berlin (1991)

    MATH  Google Scholar 

  14. Kotelenez, P.: Comparison methods for a class of function valued stochastic partial differential equations. Probab. Theory Relat. Fields 93(1), 1–19 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manthey, R., Zausinger, T.: Stochastic evolution equations in \(L^{2\nu }_p\). Stoch. Stoch. Rep. 66(1), 37–85 (1999)

    Article  MATH  Google Scholar 

  16. Mao, X.: Adapted solutions of backward stochastic differential equations with non-Lipschitz cofficients. Stoch. Proc. Appl. 58(2), 281–292 (1995)

    Article  MATH  Google Scholar 

  17. Mohammed, S.E.A.: Stochastic Functional Differential Equations. Researsch Notes in Mathematics. Pitman, Boston (1984)

    Google Scholar 

  18. Peng, S., Zhu, X.: Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch. Proc. Appl. 116(3), 370–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shiga, T.: Diffusion processes in population genetics. J. Math. Kyoto Univ. 21(1), 133–151 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Skorohod, A.V.: Studies in the Theory of Random Processes. Addison-Wesley, Reading, MA (1965)

    Google Scholar 

  21. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical surveys and monographs, vol 41. American Mathematical Society, Providence, RI (1995)

  22. Yamada, T.: On a comparison theorems for solutions of stochastic differential equations and its applications. J. Math. Kyoto Univ. 13(3), 497–512 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yamada, T., Ogura, Y.: On the strong comparison theorems for solutions of stochastic differential equations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 56(1), 3–19 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yan, J.: A comparison theorem for semimartingale and its applications. S\(\acute{e}\)minaire de Probabilit\(\acute{e}\)s, XX, Lecture Notes in Mathematics, vol. 1204. Springer, Berlin (1986)

  25. Yang, Z., Mao, X., Yuan, C.: Comparison theorem for one-dimensional stochastic hybrid delay systems. Syst. Control Lett. 57(1), 56–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is partly supported by the Natural Science Research Project of High Education of Anhui province under Grant No. 2012AJZR0323. The second author was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11371252, Research and Innovation Project of Shanghai Education Committee under Grant No. 14zz120, and the Program of Shanghai Normal University (DZL121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifa Jiang.

Appendix: The Proof of Theorem 1

Appendix: The Proof of Theorem 1

The idea for the proof is partially borrowed from [16].

Since \(\rho \) is concave with \(\rho (0) = 0\), there are two positive constants \(a_1, a_2\) such that

$$\begin{aligned} \rho (x) \le a_1x + a_2\ \mathrm{for}\ x \ge 0. \end{aligned}$$
(5.1)

As before, \(\varrho (x) \triangleq x + \rho (x)\ \mathrm{for}\ x \ge 0.\)

Lemma 12

For any \(T > 1 \) and \(\xi \in L^2(\varOmega , C(I,\mathbb {R}^d))\), where \(I\) is an interval, let

$$\begin{aligned} \tilde{C}_1(\xi )&\triangleq 3\big [(1+\gamma T^2)\mathrm{E}\parallel \xi \parallel ^2+\gamma T^2+4\gamma T\big ]e^{6\gamma T(T+2)},\\ C_1&\triangleq 3\gamma T(T+4)e^{6\gamma T(T+2)},\\ C_2&\triangleq 4d(TL+2),\\ C_3&\triangleq C_2\varrho (4\tilde{C}_1(\xi )). \end{aligned}$$

Then \(T_1 \triangleq \frac{4C_1}{C_2(4C_1+4C_1a_1+a_2)}\), depending only on \(T\) and \(\rho \) rather than on \(\xi \), satisfies that

$$\begin{aligned} C_2\varrho (C_3T_1)\le C_3. \end{aligned}$$
(5.2)

Proof

\(\tilde{T}_1 \triangleq \frac{4\tilde{C}_1(\xi )}{C_2(4\tilde{C}_1(\xi )+4\tilde{C}_1(\xi )a_1+a_2)}.\) Then \(T_1 < \tilde{T}_1 < 1\). Since \(\varrho \) is increasing on \([0,\infty )\), it suffices to show that

$$\begin{aligned} C_2\varrho \big (C_3\tilde{T}_1\big )\le C_3=C_2\varrho \big (4\tilde{C}_1(\xi )\big ). \end{aligned}$$

Equivalently, \((C_3\tilde{T}_1)\le 4\tilde{C}_1(\xi ),\) i.e.,

$$\begin{aligned} C_2\varrho \big (4\tilde{C}_1(\xi )\big )\tilde{T}_1 \le 4\tilde{C}_1(\xi ). \end{aligned}$$

By (5.1),

$$\begin{aligned} C_2\varrho \big (4\tilde{C}_1(\xi )\big )\tilde{T}_1 \le C_2\tilde{T}_1\big (4\tilde{C}_1(\xi )+4\tilde{C}_1(\xi )a_1+a_2\big )= 4\tilde{C}_1(\xi ). \end{aligned}$$

This proves (5.2). \(\square \)

From now on, fix \(T > 1\) and let \(k\) be an integer with \(\frac{T}{k} < T_1\). Denote by

$$\begin{aligned} J_i \triangleq \Big [\frac{iT}{k}-\tau ,\frac{iT}{k}\Big ]\ \mathrm{and}\ I_i \triangleq \Big [\frac{iT}{k},\frac{(i+1)T}{k}\Big ]\quad \mathrm{for}\ i = 0, 1,\ldots , k-1. \end{aligned}$$

Consider the stochastic functional differential equations

$$\begin{aligned} \left\{ \begin{array}{ll} x(t)=\xi \big (\frac{iT}{k}\big ) +\int \limits _{\frac{iT}{k}}^{t} f\big (s,x(s),x_{s}\big )ds+ \int _{\frac{iT}{k}}^{t}\sigma \big (s,x(s)\big )dW_{s},\quad t\in I_i\\ x(\theta )=\xi (\theta ), \quad \theta \in J_i. \end{array}\right. \end{aligned}$$
(5.3)

Proposition 13

Let \(\xi \in L^2(\varOmega , C(J_i,\mathbb {R}^d))\) be \(\{\mathfrak {F}_t\}_{t\in J_i}\) adapted. Then (5.3) has a solution \(x\in L^2(\varOmega , C([\frac{iT}{k}-\tau ,\frac{(i+1)T}{k}],\mathbb {R}^d))\) adapted to \(\{\mathfrak {F}_{t}\}_{t\in J_i\cup I_i}\) and with initial process \(\xi \).

Proof

To prove the existence of solution to (5.3), let us construct the following sequence of successive approximations by setting

$$\begin{aligned} \left\{ \begin{array}{ll} x^{n}(t)=\xi \big (\frac{iT}{k}\big ) +\int \limits _{\frac{iT}{k}}^{t} f\big (s,x^{n-1}(s),x^{n-1}_{s}\big )ds+\int _{\frac{iT}{k}}^{t} \sigma \big (s,x^{n-1}(s)\big )dW_{s},\quad t\in I_i\qquad \qquad \\ x^{n}(\theta )=\xi (\theta ), \quad \theta \in J_i, \end{array}\right. \end{aligned}$$
(5.4)

for \(n\ge 1,\) and

$$\begin{aligned} \left\{ \begin{array}{ll} x^{0}(t)=\xi \big (\frac{iT}{k}\big ), \quad t\in I_i\\ x^{0}(\theta )=\xi (\theta ), \quad \theta \in J_i. \end{array} \right. \end{aligned}$$

For every \(t\in I_i\), by (5.4) and the Hölder inequality we have

$$\begin{aligned} \sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{n}(\chi )|^{2}&\le \sup \limits _{\frac{iT}{k}\le \chi \le t}\Bigg (3|\xi \big (\frac{iT}{k}\big )|^{2}+3|\int \limits _{\frac{iT}{k}}^{\chi } f(s,x^{n-1}(s),x^{n-1}_{s})ds|^{2}\nonumber \\&+\, 3|\int _{\frac{iT}{k}}^{\chi } \sigma (s,x^{n-1}(s))dW_{s}|^{2}\Bigg )\\&\le 3\Big |\xi \left( \frac{iT}{k}\right) \Big |^{2}+3\Big (t-\frac{iT}{k}\Big )\int \limits _{\frac{iT}{k}}^{t} \big |f(s,x^{n-1}(s),x^{n-1}_{s})\big |^{2}ds \\&+\, 3\sup \limits _{\frac{iT}{k}\le \chi \le t}\Big |\int _{\frac{iT}{k}}^{\chi }\sigma (s,x^{n-1}(s))dW_{s}\Big |^{2}. \end{aligned}$$

By the Burkholder–Davis–Gundy inequality we have

$$\begin{aligned} E\sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{n}(\chi )|^{2}&\le 3 E\Big |\xi \left( \frac{iT}{k}\right) \Big |^{2}+3\Big (t-\frac{iT}{k}\Big )E\Big (\int \limits _{\frac{iT}{k}}^{t} |f(s,x^{n-1}(s),x^{n-1}_{s})|^{2}ds\Big )\nonumber \\&+\, 12E\int _{\frac{iT}{k}}^{t} \Big |\sigma (s,x^{n-1}(s))\Big |^{2}ds. \end{aligned}$$

It follows from (H4) and \(t-\frac{iT}{k}\le T\) for \(t\in I_i\) that

$$\begin{aligned} E\sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{n}(\chi )|^{2}\!&\le \! 3E\left| \xi (\frac{iT}{k})\right| ^{2}\!+\!3\gamma \left( t\!-\!\frac{iT}{k}\right) \left( \int \limits _{\frac{iT}{k}}^{t} (1\!+\!E|x^{n-1}(s)|^{2}\!+\!E\Vert x^{n-1}_{s}\Vert ^{2})ds\right) \\&\quad +\, 12\gamma \int _{\frac{iT}{k}}^{t}\left( 1+E|x^{n-1}(s)|^{2}\right) ds\\&\le 3\left[ (1+\gamma T^{2})E\Vert \xi \Vert ^{2}+\gamma T^{2}+4\gamma T)\right] \\&\quad +\, 6\gamma (T+2)\int _{\frac{iT}{k}}^{t}\left( E\sup \limits _{\frac{iT}{k}\le \chi \le s}|x^{n-1}(\chi )|^{2}\right) ds, \end{aligned}$$

which shows

$$\begin{aligned} \sup \limits _{0\le j\le n}E\sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{j}(\chi )|^{2}&\le 3\left[ (1+\gamma T^{2})E\Vert \xi \Vert ^{2}+\gamma T^{2}+4\gamma T)\right] \\&\quad +\, 6\gamma (T+2)\int _{\frac{iT}{k}}^{t}\left( \sup \limits _{0\le j\le n}E\sup \limits _{\frac{iT}{k}\le \chi \le s}|x^{j}(\chi )|^{2}\right) ds. \end{aligned}$$

Using the classical Gronwall inequality we get that for \(t\in I_i\)

$$\begin{aligned} \sup \limits _{0\le j\le n}E\sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{j}(\chi )|^{2}&\le 3\left[ (1+\gamma T^{2})E\Vert \xi \Vert ^{2}+\gamma T^{2}+4\gamma T)\right] e^{6\gamma (T+2)(t-\frac{iT}{k})}\\&\le 3\left[ (1+\gamma T^{2})E\Vert \xi \Vert ^{2}+\gamma T^{2}+4\gamma T)\right] e^{6\gamma T(T+2)}. \end{aligned}$$

In particular,

$$\begin{aligned} E\sup \limits _{t\in I_i}|x^{n}(t)|^{2}\le 3\left[ (1+\gamma T^{2})E\Vert \xi \Vert ^{2}+\gamma T^{2}+4\gamma T)\right] e^{6\gamma T(T+2)}=\tilde{C}_1(\xi ),\ n\ge 1.\nonumber \\ \end{aligned}$$
(5.5)

From (5.4) it follows that \(\{x^{n}(t),n\ge 1,t\in I_i\}\) are adapted to \((\mathfrak {F}_{t})_{t\in I_i}\) with continuous sample paths. Again by (5.4) and the Hölder inequality we get that for any \(n\ge 1,m\ge 1\) and \(t\in I_i\)

$$\begin{aligned} \sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{n+m}(\chi )-x^{n}(\chi )|^{2}\!&\le \! \sup \limits _{\frac{iT}{k}\le \chi \le t}\Big (2|\int \limits _{\frac{iT}{k}}^{\chi } (f(s,x^{n+m-1}(s),x^{n+m-1}_{s})-f(s,x^{n-1} (s),\nonumber \\&\quad \times x^{n-1}_{s}))ds|^{2}\\&+\, 2|\int _{\frac{iT}{k}}^{\chi }(\sigma (s,x^{n+m-1}(s))\!-\!\sigma (s,x^{n-1}(s))) dW_{s}|^{2}\Big )\\ \!&\le \! 2T\int \limits _{\frac{iT}{k}}^{t}\big | f(s,x^{n+m-1}(s),x^{n+m-1}_{s})-f(s,x^{n-1}(s),x^{n-1}_{s})\big |^{2}ds\\&+\, 2\sup \limits _{\frac{iT}{k}\le \chi \le t}\big |\int _{\frac{iT}{k}}^{\chi }(\sigma (s,x^{n+m-1}(s))-\sigma (s,x^{n-1}(s))) dW_{s}\big |^{2}. \end{aligned}$$

By (H2), (H3\(^*\)), the concavity of \(\rho \) and the Burkholder–Davis–Gundy inequality, we have

$$\begin{aligned} E\sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{n+m}(\chi )-x^{n}(\chi )|^{2}\!&\le \! 2{ TdL} E\int \limits _{\frac{iT}{k}}^{t}\left( | x^{n+m-1}(s)\!-\!x^{n-1}(s)|^{2}\!+\!\Vert x^{n+m-1}_{s}\!-\!x^{n-1}_{s}\Vert ^{2}\right) ds \nonumber \\&+\, 8E\int _{\frac{iT}{k}}^{t}\left| \sigma (s,x^{n+m-1}(s))- \sigma (s,x^{n-1}(s))\right| ^{2}ds \nonumber \\ \!&\le \! 4{ TdL} \int \limits _{\frac{iT}{k}}^{t}\left( E\sup \limits _{\frac{iT}{k}\le \chi \le s}| x^{n+m-1}(\chi )-x^{n-1}(\chi )|^{2}\right) ds \nonumber \\&+\, 8d\int \limits _{\frac{iT}{k}}^{t}\rho \left( E\sup \limits _ {\frac{iT}{k}\le \chi \le s}|x^{n+m-1}(\chi )-x^{n-1}(\chi )|^{2}\right) ds\nonumber \\ \!&\le \! C_{2}\int \limits _{\frac{iT}{k}}^{t}\varrho \left( E\sup \limits _{\frac{iT}{k}\le \chi \le s}| x^{n+m-1}(\chi )-x^{n-1}(\chi )|^{2}\right) ds, \end{aligned}$$
(5.6)

where \(C_{2}=4TdL+8d\). The above inequality and (5.5) show that

$$\begin{aligned} E\sup \limits _{\frac{iT}{k}\le \chi \le t}\big |x^{n+m}(\chi )-x^{n}(\chi )\big |^{2}\le C_{3}\Big (t-\frac{iT}{k}\Big ), \end{aligned}$$
(5.7)

where \(C_{3}\triangleq C_{2}\varrho (4\tilde{C}_{1}(\xi )).\)

Define two sequences of functions \(\{\varphi _{n}(t)\}\) and \(\{\widetilde{\varphi }_{n,m}(t)\}\) on \(I_i\) as follows:

$$\begin{aligned} \varphi _{1}(t)&=C_{3}\left( t-\frac{iT}{k}\right) ,\\ \varphi _{n+1}(t)&=C_{2}\int _{\frac{iT}{k}}^{t}\varrho (\varphi _{n}(s))ds,\quad n\ge 1,\\ \widetilde{\varphi }_{n,m}(t)&=E\sup \limits _{\frac{iT}{k}\le \chi \le t}|x^{n+m}(\chi )-x^{n}(\chi )|^{2},\quad n\ge 1, m\ge 1. \end{aligned}$$

We claim that for every \(n\ge 1\) and \(m\ge 1\),

$$\begin{aligned} 0\le \widetilde{\varphi }_{n,m}(t)\le \varphi _{n}(t)\le \varphi _{n-1}(t)\le \cdots \le \varphi _{1}(t),\quad t\in I_i. \end{aligned}$$
(5.8)

First of all, By (5.2), the assumption \(\frac{T}{k} < T_1\) and the monotonicity for \(\varrho \), we have for any \(t\in I_i,\)

$$\begin{aligned} C_{2}\varrho \left( C_{3}(t-\frac{iT}{k})\right) \le C_{3}. \end{aligned}$$
(5.9)

In view of (5.7) and (5.6), we have

$$\begin{aligned} \widetilde{\varphi }_{1,m}(t)&=E\sup \limits _{\frac{iT}{k}\le \chi \le t}\left| x^{1+m}(\chi )-x^{1}(\chi )\right| ^{2}\le C_{3}\left( t-\frac{iT}{k}\right) =\varphi _{1}(t).\\ \widetilde{\varphi }_{2,m}(t)&=E\sup \limits _{\frac{iT}{k}\le \chi \le t}\left| x^{2+m}(\chi )-x^{2}(\chi )\right| ^{2}\\&\le C_{2}\int \limits _{\frac{iT}{k}}^{t}\varrho \left( E\sup \limits _{\frac{iT}{k}\le \chi \le s}|x^{1+m}(\chi )-x^{1}(\chi )|^{2}\right) ds \\&\le C_{2}\int \limits _{\frac{iT}{k}}^{t}\varrho \left( \varphi _{1}(s)\right) ds=\varphi _{2}(t). \end{aligned}$$

But by (5.9) we also have

$$\begin{aligned} \varphi _{2}(t)=C_{2}\int _{\frac{iT}{k}}^{t}\varrho (\varphi _{1}(s))ds \le \varphi _{1}(t). \end{aligned}$$

Now we have already shown that for \(t\in I_i,\)

$$\begin{aligned} \widetilde{\varphi }_{2,m}(t)\le \varphi _{2}(t)\le \varphi _{1}(t). \end{aligned}$$

Next we assume that (5.8) holds for some \(n\ge 2\), then by (5.6)

$$\begin{aligned} \widetilde{\varphi }_{n+1,m}(t)&\le C_{2} \int \limits _{\frac{iT}{k}}^{t}\varrho \left( E\sup \limits _{\frac{iT}{k}\le \chi \le s}| x^{n+m}(\chi )-x^{n}(\chi )|^{2}\right) ds\\&\le C_{2}\int \limits _{\frac{iT}{k}}^{t}\varrho (\varphi _{n}(s))ds=\varphi _{n+1}(t)\\&\le C_{2}\int \limits _{\frac{iT}{k}}^{t}\varrho (\varphi _{n-1}(s))ds=\varphi _{n}(t), \end{aligned}$$

that is, (5.8) holds for \(n+1\) as well. Consequently by induction (5.8) must hold for \(n\ge 1.\)

Now our purpose is to prove

$$\begin{aligned} E\sup \limits _{t\in I_i}\left| x^{l}(t)-x^{n}(t)\right| ^{2}\rightarrow 0 \end{aligned}$$
(5.10)

as \(l,n\rightarrow \infty .\) Note that for every \(n\ge 1, \varphi _{n}(t)\) is increasing on \(I_i\) and for each \(t, \varphi _{n}(t)\) is monotonically nonincreasing as \(n\rightarrow \infty .\) Hence we can define the function \(\varphi (t)\) by \(\varphi _{n}(t)\downarrow \varphi (t).\) It is easy to see that \(\varphi (t)\) is continuous and increasing on \(I_i.\) By the definition of \(\varphi _{n}(t)\) and \(\varphi (t)\) we have

$$\begin{aligned} \varphi (t)=C_{2}\int _{\frac{iT}{k}}^{t}\varrho (\varphi (s))ds,\quad t\in I_i. \end{aligned}$$

The proof of Corollary 2.3 shows that \(\varphi (t)=0,\ t\in I_i.\) Clearly \(\varphi _{n}(\frac{(i+1)T}{k})\downarrow 0\) as \(n\rightarrow \infty .\) Hence for any \(\epsilon >0\), there exists an integer \(N\ge 1\) such that \(\varphi _{n}(\frac{(i+1)T}{k})<\epsilon \) whenever \(n>N.\) For any \(m\ge 1\) and \(n>N\), the above claim deduces that

$$\begin{aligned} E\sup \limits _{t\in I_i}\left| x^{n+m}(t)-x^{n}(t)\right| ^{2}=\widetilde{\varphi }_{n,m}\left( \frac{(i+1)T}{k}\right) \le \varphi _{n}\left( \frac{(i+1)T}{k}\right) <\epsilon . \end{aligned}$$

So (5.10) holds. It follows that

$$\begin{aligned} \lim \limits _{n,l\rightarrow \infty } E\sup \limits _{t\in J_i\bigcup I_i}\left| x^{n}(t)-x^{l}(t)\right| ^{2}=0. \end{aligned}$$
(5.11)

For each \(x(t)\in \mathbb {L}^{2}(\varOmega ,C(J_i\bigcup I_i,\mathbb {R}^{d}))\), define \(\Vert x\Vert _{\star }\triangleq (E\sup \nolimits _{t\in J_i\bigcup I_i}|x(t)|^{2})^{\frac{1}{2}}\). Then the space \(\mathbb {L}^{2}(\varOmega ,C(J_i\bigcup I_i,\mathbb {R}^{d}))\) is a Banach space. Consequently by (5.11) there exists \(x(t)\in \mathbb {L}^{2}(\varOmega ,C(J_i\bigcup I_i,\mathbb {R}^{d}))\) such that

$$\begin{aligned} \lim \limits _{n\rightarrow \infty } E\sup \limits _{t\in J_i\bigcup I_i}|x^{n}(t)-x(t)|^{2}=0. \end{aligned}$$

For any \(\delta >0\), by Chebyshev’s inequality we have

$$\begin{aligned} \lim \limits _{n\rightarrow \infty } \mathbb {P}\left( \sup \limits _{t\in J_i\bigcup I_i}|x^{n}(t)-x(t)|\ge \delta \right) =0. \end{aligned}$$

By the definition of limit, there is a subsequence \(\{n_{k}\}_{k=1}^{\infty }\) satisfying that

$$\begin{aligned} \mathbb {P}\left( \sup \limits _{t\in J_i\bigcup I_i}|x^{n_{k}}(t)-x(t)|\ge \frac{1}{k}\right) \le \frac{1}{2^{k}},k\ge 1. \end{aligned}$$

The Borel–Cantelli Lemma shows that \(x^{n_{k}}(t)\) converges to \(x(t)\) uniformly on \(J_i\bigcup I_i\) almost surely. It follows that \(x(t),\ t\in I_i\) has continuous sample paths and is adapted to \(\{\mathfrak {F}_{t}\}_{t\in I_i}\). Moreover, simply computation shows that

as \(n\rightarrow \infty .\) Letting \(n\rightarrow \infty \), we conclude that \(x(t), \ t\in I_i\) satisfies system (5.3). This completes the proof. \(\square \)

Proof of Theorem 2.1

For any \(\phi \in \mathcal {C}\) and \(T > 1\), applying Proposition 13 with \(i=0,\ \xi =\phi \), we get the solution \(x = x(t)\) for (2.1) on \(I_0\), which is adapted to \(\{\mathfrak {F}_{t}\}_{t\in I_0}\). Then again using Proposition 13 with \(i=1,\ \xi =x_{\frac{T}{k}}\), we have a solution for (5.3) on \(I_1\) adapted to \(\{\mathfrak {F}_{t}\}_{t\in I_1}\). In this way, we have extended the solution for (2.1) to the interval \(I_0\bigcup I_1\). Repeatedly applying Proposition 13 with \(\xi =x_{\frac{iT}{k}}\) for \(i=2,\ldots ,k-1\) in order, we obtain that the existence for the strong solution for (2.1) on the interval \([0,T]\), which is adapted to \(\{\mathfrak {F}_{t}\}_{t\in [0,T]}\). Since \(T\) is arbitrary, the global strong solution exists. Lemma II.2.1 in [17] guarantees that \(x_{t}(\phi )\) is a \(\mathcal {C}\)-valued process adapted to \(\{\mathfrak {F}_{t}\}_{t\ge 0}\) with continuous sample paths.

Finally we finish the proof of the uniqueness of solution to system (2.1). To this end, we assume that \(\{x(t),t\ge 0\}\) and \(\{x^{*}(t),t\ge 0\}\) are solutions to system (2.1). Using the above similar arguments, we have

$$\begin{aligned} E\sup \limits _{0\le t \le T}|x(t)-x^{*}(t)|^{2}=0. \end{aligned}$$

This shows that \(\{x(t),t\ge 0\}\) and \(\{x^{*}(t),t\ge 0\}\) are modifications of one another, and thus are indistinguishable. This completes the proof. \(\square \)

Remark 14

Using Fatou Lemma and (5.5) one has

$$\begin{aligned} E\sup \limits _{0\le t \le T}|x(t)|^{2}\le \widetilde{C}_{1}(\phi ). \end{aligned}$$

Hence by the pathwise continuity of \(x(t)\) and Lebesgue’s Theorem on dominated convergence one concludes that \(t\rightarrow E\sup \nolimits _{0\le \chi \le t}|x(\chi )|^{2}\) is continuous.

Note We independently obtain the comparison theorem for SFDEs. This result was first presented in the Second International Conference on Recent Advances in Random Dynamical Systems, which held in Nanjing Normal University on June 20–23, 2011, and then in several international conferences. We submitted it to Stochastic Analysis and Applications on October 24, 2011 and withdrew the submission on August 18, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Jiang, J. Comparison Theorem for Stochastic Functional Differential Equations and Applications. J Dyn Diff Equat 29, 1–24 (2017). https://doi.org/10.1007/s10884-014-9406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9406-x

Keywords

Navigation