Skip to main content
Log in

Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part II: Numerics

Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider a one-dimensional steady-state Poisson–Nernst–Planck type model for ionic flow through membrane channels. Improving the classical Poisson–Nernst–Planck models where ion species are treated as point charges, this model includes ionic interaction due to finite sizes of ion species modeled by hard sphere potential from the Density Functional Theory. The resulting problem is a singularly perturbed boundary value problem of an integro-differential system. We examine the problem and investigate the ion size effect on the current–voltage (I–V) relations numerically, focusing on the case where two oppositely charged ion species are involved and only the hard sphere components of the excess chemical potentials are included. Two numerical tasks are conducted. The first one is a numerical approach of solving the boundary value problem and obtaining I–V curves. This is accomplished through a numerical implementation of the analytical strategy introduced by Ji and Liu in [Poisson–Nernst–Planck systems for ion flow with density functional theory for hard-sphere potential: I–V relations and critical potentials. Part I: Analysis, J. Dyn. Differ. Equ. (to appear)]. The second task is to numerically detect two critical potential values V c and V c.The existence of these two critical values is first realized for a relatively simple setting and analytical approximations of V c and V c are obtained in the above mentioned reference. We propose an algorithm for numerical detection of V c and V c without using any analytical formulas but based on the defining properties and numerical I–V curves directly. For the setting in the above mentioned reference, our numerical values for V c and V c agree well with the analytical predictions. For a setting including a nonzero permanent charge in which case no analytic formula for the I–V relation is available now, our algorithms can still be applied to find V c and V c numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abaid N., Eisenberg R.S., Liu W.: Asymptotic expansions of I–V relations via a Poisson–Nernst–Planck system. SIAM J. Appl. Dyn. Syst. 7, 1507–1526 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aboud S., Marreiro D., Saraniti M., Eisenberg R.S.: A Poisson P3M force field scheme for particle-based simulations of ionic liquids. J. Comput. Electron. 3, 117–133 (2004)

    Article  Google Scholar 

  3. Bazant M.Z., Kilic M.S., Storey B.D., Ajdari A.: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009)

    Article  Google Scholar 

  4. Barcilon V.: Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 52, 1391–1404 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barcilon V., Chen D.-P., Eisenberg R.S.: Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 52, 1405–1425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barcilon V., Chen D.-P., Eisenberg R.S., Jerome J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 57, 631–648 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boda D., Gillespie D., Nonner W., Henderson D., Eisenberg B.: Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E 69(046702), 1–10 (2004)

    Google Scholar 

  8. Boda D., Busath D., Eisenberg B., Henderson D., Nonner W.: Monte Carlo simulations of ion selectivity in a biological Na+ channel: charge-space competition. Phys. Chem. Chem. Phys. 4, 5154–5160 (2002)

    Article  Google Scholar 

  9. Burger M., Eisenberg R.S., Engl H.W.: Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 67, 960–989 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardenas A.E., Coalson R.D., Kurnikova M.G.: Three-dimensional Poisson–Nernst–Planck theory studies: Influence of membrane electrostatics on gramicidin A channel conductance. Biophys. J. 79, 80–93 (2000)

    Article  Google Scholar 

  11. Chen D.P., Eisenberg R.S.: Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 64, 1405–1421 (1993)

    Article  Google Scholar 

  12. Chung S., Kuyucak S.: Predicting channel function from channel structure using Brownian dynamics simulations. Clin. Exp. Pharmacol. Physiol. 28, 89–94 (2001)

    Article  Google Scholar 

  13. Coalson R.D.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4, 81–93 (2005)

    Article  Google Scholar 

  14. Coalson R.D.: Discrete-state model of coupled ion permeation and fast gating in ClC chloride channels. J. Phys. A 41, 115001 (2009)

    Article  MathSciNet  Google Scholar 

  15. Coalson R., Kurnikova M.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. NanoBiosci. 4, 81–93 (2005)

    Article  Google Scholar 

  16. Eisenberg B., Hyon Y., Liu C.: Energy variational analysis EnVarA of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (2010)

    Article  Google Scholar 

  17. Eisenberg B., Hyon Y., Liu C.: Energy variational analysis EnVarA of ions in calcium and sodium channels: Field theory for primitive models of complex ionic fluids. Biophys. J. 98, 515a (2010)

    Article  Google Scholar 

  18. Eisenberg B., Liu W.: Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38, 1932–1966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Evans R.: The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979)

    Article  Google Scholar 

  20. Evans, R.: Density functionals in the theory of nonuniform fluids. In: Henderson, D. (eds.) Fundamentals of Inhomogeneous Fluids, pp. 85–176. Dekker, New York (1992)

  21. Fischer J., Heinbuch U.: Relationship between free energy density functional, Born–Green–Yvon, and potential distribution approaches for inhomogeneous fluids. J. Chem. Phys. 88, 1909–1913 (1988)

    Article  Google Scholar 

  22. Gillespie, D. A singular perturbation analysis of the Poisson–Nernst–Planck system: Applications to Ionic Channels. Ph.D Dissertation, Rush University at Chicago (1999)

  23. Gillespie D., Xu L., Wang Y., Meissner G.: (De)constructing the Ryanodine receptor: Modeling ion permeation and selectivity of the calcium release channel. J. Phys. Chem. B 109, 15598–15610 (2005)

    Article  Google Scholar 

  24. Gillespie D.: Energetics of divalent selectivity in a calcium channel: The Ryanodine receptor case study. Biophys. J. 94, 1169–1184 (2008)

    Article  Google Scholar 

  25. Gillespie D.: Intracellular calcium release channels mediate their own countercurrent: The Ryanodine receptor case study. Biophys. J. 95, 3706–3714 (2008)

    Article  Google Scholar 

  26. Gillespie D., Giri J., Fill M.: Reinterpreting the anomalous mole fraction effect: The Ryanodine receptor case study. Biophys. J. 97, 2212–2221 (2009)

    Article  Google Scholar 

  27. Gillespie D., Eisenberg R.S.: Modified Donnan potentials for ion transport through biological ion channels. Phys. Rev. E 63(061902), 1–8 (2001)

    Google Scholar 

  28. Gillespie D., Eisenberg R.S.: Physical descriptions of experimental selectivity measurements in ion channels. Eur. Biophys. J. 31, 454–466 (2002)

    Article  Google Scholar 

  29. Gillespie D., Nonner W., Eisenberg R.S.: Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 14, 12129–12145 (2002)

    Article  Google Scholar 

  30. Gillespie D., Nonner W., Eisenberg R.S.: Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 68(0313503), 1–10 (2003)

    Google Scholar 

  31. Graf P., Kurnikova M.G., Coalson R.D., Nitzan A.: Comparison of dynamic lattice Monte-Carlo simulations and dielectric self energy Poisson–Nernst–Planck continuum theory for model ion channels. J. Phys. Chem. B 108, 2006–2015 (2004)

    Article  Google Scholar 

  32. Hollerbach U., Chen D.-P., Eisenberg R.S.: Two- and three-dimensional Poisson–Nernst–Planck simulations of current flow through Gramicidin-A. J. Comp. Sci. 16, 373–409 (2002)

    Article  Google Scholar 

  33. Hollerbach U., Chen D., Nonner W., Eisenberg B.: Three-dimensional Poisson–Nernst–Planck theory of open channels. Biophys. J. 76, A205 (1999)

    Google Scholar 

  34. Hyon Y., Eisenberg B., Liu C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2010)

    MathSciNet  Google Scholar 

  35. Hyon Y., Fonseca J., Eisenberg B., Liu C.: A new Poisson–Nernst–Planck equation (PNP–FS–IF) for charge inversion near walls. Biophys. J. 100, 578a (2011)

    Article  Google Scholar 

  36. Im W., Beglov D., Roux B.: Continuum solvation model: Electrostatic forces from numerical solutions to the Poisson–Bolztmann equation. Comp. Phys. Comm. 111, 59–75 (1998)

    Article  MATH  Google Scholar 

  37. Im W., Roux B.: Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322, 851–869 (2002)

    Article  Google Scholar 

  38. Ji S., Liu W.: Poisson–Nernst–Planck Systems for ion flow with density functional theory for hard-sphere potential: I–V relations and critical potentials. Part I: Analysis J. Dyn. Differ. Equ. (to appear)

  39. Kilic M.S., Bazant M.Z., Ajdari A.: Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations. Phys. Rev. E 75(021503), 11 (2007)

    Google Scholar 

  40. Kierzenka J., Shampine L.: A BVP solver based on residual control and the Matlab PSE. ACM Trans. Math. Software 27, 299–316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Knepley M., karpeev D., Davidovits S., eisenberg R., Gillespie D.: An efficient algorithm for classical density functional theory in three dimensions: Ionic solutions. J. Chem. Phys 132, 124101 (2010)

    Article  Google Scholar 

  42. Kurnikova M.G., Coalson R.D., Graf P., Nitzan A.: A lattice relaxation algorithm for 3D Poisson–Nernst–Planck theory with application to ion transport through the Gramicidin A channel. Biophys. J. 76, 642–656 (1999)

    Article  Google Scholar 

  43. Liu W.: Geometric singular perturbation approach to steady-state Poisson–Nernst–Planck systems. SIAM J. Appl. Math. 65, 754–766 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu W.: One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species. J. Differ. Equ. 246, 428–451 (2009)

    Article  MATH  Google Scholar 

  45. Mock M.S.: An example of nonuniqueness of stationary solutions in device models. COMPEL 1, 165–174 (1982)

    Article  Google Scholar 

  46. Nadler B., Hollerbach U., Eisenberg R.S.: Dielectric boundary force and its crucial role in gramicidin. Phys. Rev. E 68(021905), 1–9 (2003)

    Google Scholar 

  47. Nadler B., Schuss Z., Singer A., Eisenberg B.: Diffusion through protein channels: From molecular description to continuum equations. Nanotech 3, 439–442 (2003)

    Google Scholar 

  48. Nonner W., Eisenberg R.S.: Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-type calcium channels. Biophys. J. 75, 1287–1305 (1998)

    Article  Google Scholar 

  49. Noskov S.Y., Im W., Roux B.: Ion permeation through the α-Hemolysin channel: Theoretical studies based on Brownian dynamics and Poisson–Nernst–Planck electrodiffusion theory. Biophys. J. 87, 2299–2309 (2004)

    Article  Google Scholar 

  50. Park J.-K., Jerome J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: Mathematical study. SIAM J. Appl. Math. 57, 609–630 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Percus J.K.: Equilibrium state of a classical fluid of hard rods in an external field. J. Stat. Phys. 15, 505–511 (1976)

    Article  MathSciNet  Google Scholar 

  52. Percus J.K.: Model grand potential for a nonuniform classical fluid. J. Chem. Phys. 75, 1316–1319 (1981)

    Article  Google Scholar 

  53. Robledo A., Varea C.: On the relationship between the density functional formalism and the potential distribution theory for nonuniform fluids. J. Stat. Phys. 26, 13–525 (1981)

    Article  Google Scholar 

  54. Rosenfeld Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980–983 (1989)

    Article  Google Scholar 

  55. Rosenfeld Y.: Free energy model for the inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98, 8126–8148 (1993)

    Article  Google Scholar 

  56. Roux B., Allen T.W., Berneche S., Im W.: Theoretical and computational models of biological ion channels. Quat. Rev. Biophys. 37, 15–103 (2004)

    Article  Google Scholar 

  57. Roux, B.: Theory of transport in ion channels: From molecular dynamics simulations to experiments. In: Goodefellow, J. (ed.) Computer Simulation in Molecular Biology, Chapter 6, pp. 133–169. VCH, Weinheim (1995)

  58. Rubinstein I.: Multiple steady states in one-dimensional electrodiffusion with local electroneutrality. SIAM J. Appl. Math. 47, 1076–1093 (1987)

    Article  MathSciNet  Google Scholar 

  59. Rubinstein I.: Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  60. Saraniti M., Aboud S., Eisenberg R.: The simulation of ionic charge transport in biological ion channels: An introduction to numerical methods. Rev. Comp. Chem. 22, 229–294 (2005)

    Google Scholar 

  61. Schuss Z., Nadler B., Eisenberg R.S.: Derivation of Poisson and Nernst–Planck equations in a bath and channel from a molecular model. Phys. Rev. E 64, 1–14 (2001)

    Article  Google Scholar 

  62. Singer A., Norbury J.: A Poisson–Nernst–Planck model for biological ion channels—an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70, 949–968 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Singer A., Gillespie D., Norbury J., Eisenberg R.S.: Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels. European J. Appl. Math. 19, 541–560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Steinrück H.: Asymptotic analysis of the current-voltage curve of a pnpn semiconductor device. IMA J. Appl. Math. 43, 243–259 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  65. Steinrück H.: A bifurcation analysis of the one-dimensional steady-state semiconductor device equations. SIAM J. Appl. Math. 49, 1102–1121 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  66. van der Straaten T.A., Kathawala G., Eisenberg R.S., Ravaioli U.: BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mol. Simul. 31, 151–171 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Tu, X. & Zhang, M. Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part II: Numerics. J Dyn Diff Equat 24, 985–1004 (2012). https://doi.org/10.1007/s10884-012-9278-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9278-x

Keywords

Mathematics Subject Classification

Navigation