Skip to main content
Log in

Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part I: Analysis

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this work, we analyze a one-dimensional steady-state Poisson–Nernst–Planck type model for ionic flow through a membrane channel including ionic interactions modeled from the Density Functional Theory in a simple setting: Two oppositely charged ion species are involved with electroneutrality boundary conditions and with zero permanent charge, and only the hard sphere component of the excess (beyond the ideal) electrochemical potential is included. The model can be viewed as a singularly perturbed integro-differential system with a parameter resulting from a dimensionless scaling of the problem as the singular parameter. Our analysis is a combination of geometric singular perturbation theory and functional analysis. The existence of a solution of the model problem for small ion sizes is established and, treating the sizes as small parameters, we also derive an approximation of the I–V (current–voltage) relation. For this relatively simple situation, it is found that the ion size effect on the I–V relation can go either way—enhance or reduce the current. More precisely, there is a critical potential value V c so that, if V > V c , then the ion size enhances the current; if V < V c , it reduces the current. There is another critical potential value V c so that, if V > V c, the current is increasing with respect to λ =  r 2/r 1 where r 1 and r 2 are, respectively, the radii of the positively and negatively charged ions; if V < V c, the current is decreasing in λ. To our knowledge, the existence of these two critical values for the potential was not previously identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaid N., Eisenberg R.S., Liu W.: Asymptotic expansions of I–V relations via a Poisson–Nernst–Planck system. SIAM J. Appl. Dyn. Syst. 7, 1507–1526 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aboud S., Marreiro D., Saraniti M., Eisenberg R.S.: A Poisson P3M force field scheme for particle-based simulations of ionic liquids. J. Comput. Electron. 3, 117–133 (2004)

    Article  Google Scholar 

  3. Barcilon V.: Ion flow through narrow membrane channels: part I. SIAM J. Appl. Math. 52, 1391–1404 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barcilon V., Chen D., Eisenberg R.: Ion flow through narrow membrane channels: part II. SIAM J. Appl. Math. 52, 1405–1425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barcilon V., Chen D., Eisenberg R., Jerome J.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57, 631–648 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazant M.Z., Kilic M.S., Storey B.D., Ajdari A.: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009)

    Article  Google Scholar 

  7. Biesheuvel P.M., van Soestbergen M.: Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 316, 490–499 (2007)

    Article  Google Scholar 

  8. Bikerman J.J.: Structure and capacity of the electrical double layer. Philos. Mag. 33, 384 (1942)

    MATH  Google Scholar 

  9. Boda D., Busath D., Eisenberg B., Henderson D., Nonner W.: Monte Carlo simulations of ion selectivity in a biological Na+ channel: charge-space competition. Phys. Chem. Chem. Phys. 4, 5154–5160 (2002)

    Article  Google Scholar 

  10. Boda, D., Gillespie, D., Nonner, W., Henderson, D., Eisenberg, B.: Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E 69, 046702 (1–10) (2004)

    Google Scholar 

  11. Burger M., Eisenberg R.S., Engl H.W.: Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 67, 960–989 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardenas A.E., Coalson R.D., Kurnikova M.G.: Three-dimensional Poisson–Nernst–Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. Biophys. J. 79, 80–93 (2000)

    Article  Google Scholar 

  13. Chazalviel J.-N.: Coulomb Screening by Mobile Charges. Birkhauser, New York (1999)

    Google Scholar 

  14. Chen D.P., Eisenberg R.S.: Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 64, 1405–1421 (1993)

    Article  Google Scholar 

  15. Chung S., Kuyucak S.: Predicting channel function from channel structure using Brownian dynamics simulations. Clin. Exp. Pharmacol. Physiol. 28, 89–94 (2001)

    Article  Google Scholar 

  16. Coalson R.D.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4, 81–93 (2005)

    Article  Google Scholar 

  17. Coalson R.D.: Discrete-state model of coupled ion permeation and fast gating in ClC chloride channels. J. Phys. A 41, 115001 (2009)

    Article  MathSciNet  Google Scholar 

  18. Coalson R., Kurnikova M.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. NanoBiosci. 4, 81–93 (2005)

    Article  Google Scholar 

  19. Eisenberg R.S.: Channels as enzymes. J. Membr. Biol. 115, 1–12 (1990)

    Article  Google Scholar 

  20. Eisenberg R.S.: Atomic biology, electrostatics and ionic channels. In: Elber, R. (eds) New Developments and Theoretical Studies of Proteins, pp. 269–357. World Scientific, Philadelphia (1996)

    Chapter  Google Scholar 

  21. Eisenberg R.: From structure to function in open ionic channels. J. Membr. Biol. 171, 1–24 (1999)

    Article  Google Scholar 

  22. Eisenberg B.: Ion channels as devices. J. Comput. Electron. 2, 245–249 (2003)

    Article  Google Scholar 

  23. Eisenberg B.: Proteins, channels, and crowded ions. Biophys. Chem. 100, 507–517 (2003)

    Article  Google Scholar 

  24. Eisenberg, B.: Living transistors: a physicist’s view of ion channels. Posted on http://arxiv.org/withPaperIDq-bio.BM/0506016, June 14, 2005 (2005)

  25. Eisenberg B., Liu W.: Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38, 1932–1966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (1–23) (2010)

    Google Scholar 

  27. Eisenberg B., Hyon Y., Liu C.: Energy variational analysis En VarA of ions in calcium and sodium channels. Field theory for primitive models of complex ionic fluids. Biophys. J. 98, 515a (2010)

    Article  Google Scholar 

  28. Evans R.: The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979)

    Article  Google Scholar 

  29. Evans R.: Density functionals in the theory of nonuniform fluids. In: Henderson, D. (eds) Fundamentals of Inhomogeneous Fluids, pp. 85–176. Dekker, New York (1992)

    Google Scholar 

  30. Fischer J., Heinbuch U.: Relationship between free energy density functional, Born-Green-Yvon, and potential distribution approaches for inhomogeneous fluids. J. Chem. Phys. 88, 1909–1913 (1988)

    Article  Google Scholar 

  31. Gillespie, D.: A singular perturbation analysis of the Poisson–Nernst–Planck system: applications to ionic channels. Ph.D Dissertation, Rush University at Chicago (1999)

  32. Gillespie, D., Eisenberg, R.S.: Modified Donnan potentials for ion transport through biological ion channels. Phys. Rev. E 63, 061902 (1–8) (2001)

  33. Gillespie D., Eisenberg R.S.: Physical descriptions of experimental selectivity measurements in ion channels. Eur. Biophys. J. 31, 454–466 (2002)

    Article  Google Scholar 

  34. Gillespie D., Nonner W., Eisenberg R.S.: Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 14, 12129–12145 (2002)

    Article  Google Scholar 

  35. Gillespie, D., Nonner, W., Eisenberg, R.S.: Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 68, 0313503 (1–10) (2003)

    Google Scholar 

  36. Gillespie D., Nonner W., Eisenberg R.S.: Crowded charge in biological ion channels. Nanotechnology 3, 435–438 (2003)

    Google Scholar 

  37. Gillespie D., Xu L., Wang Y., Meissner G.: (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel. J. Phys. Chem. B 109, 15598–15610 (2005)

    Article  Google Scholar 

  38. Graf P., Kurnikova M.G., Coalson R.D., Nitzan A.: Comparison of dynamic lattice Monte-Carlo simulations and dielectric self energy Poisson–Nernst–Planck continuum theory for model ion channels. J. Phys. Chem. B 108, 2006–2015 (2004)

    Article  Google Scholar 

  39. Henderson L.J.: The Fitness of the Environment: An Inquiry into the Biological Significance of the Properties of Matter. Macmillan, New York (1927)

    Google Scholar 

  40. Hollerbach U., Chen D., Nonner W., Eisenberg B.: Three-dimensional Poisson–Nernst–Planck theory of open channels. Biophys. J. 76, A205 (1999)

    Google Scholar 

  41. Hollerbach U., Chen D.-P., Eisenberg R.S.: Two- and three-dimensional Poisson–Nernst–Planck simulations of current flow through gramicidin-A. J. Comput. Sci. 16, 373–409 (2002)

    Google Scholar 

  42. Hyon Y., Eisenberg B., Liu C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2010)

    MathSciNet  Google Scholar 

  43. Hyon Y., Fonseca J., Eisenberg B., Liu C.: A new Poisson–Nernst–Planck equation (PNP-FS-IF) for charge inversion near walls. Biophys. J. 100, 578a (2011)

    Article  Google Scholar 

  44. Im W., Roux B.: Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322, 851–869 (2002)

    Article  Google Scholar 

  45. Im W., Beglov D., Roux B.: Continuum solvation model: electrostatic forces from numerical solutions to the Poisson–Bolztmann equation. Comput. Phys. Commun. 111, 59–75 (1998)

    Article  MATH  Google Scholar 

  46. Jerome J.W.: Mathematical Theory and Approximation of Semiconductor Models. Springer, New York (1995)

    Google Scholar 

  47. Jerome J.W., Kerkhoven T.: A finite element approximation theory for the drift-diffusion semiconductor model. SIAM J. Numer. Anal. 28, 403–422 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jones, C.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994), pp. 44–118. Lecture Notes in Mathematics 1609. Springer, Berlin (1995)

  49. Jones C., Kopell N.: Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Differ. Equ. 108, 64–88 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations. Phys. Rev. E 75, 021503 (11 pp) (2007)

    Google Scholar 

  51. Kurnikova M.G., Coalson R.D., Graf P., Nitzan A.: A lattice relaxation algorithm for 3D Poisson–Nernst–Planck theory with application to ion transport through the gramicidin A channel. Biophys. J. 76, 642–656 (1999)

    Article  Google Scholar 

  52. Liu W.: Geometric singular perturbation approach to steady-state Poisson–Nernst–Planck systems. SIAM J. Appl. Math. 65, 754–766 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Liu W.: One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species. J. Differ. Equ. 246, 428–451 (2009)

    Article  MATH  Google Scholar 

  54. Liu W., Wang B.: Poisson–Nernst–Planck systems for narrow tubular-like membrane channels. J. Dyn. Differ. Equ. 22, 413–437 (2010)

    Article  MATH  Google Scholar 

  55. Liu, W., Tu, X., Zhang, M.: Poisson–Nernst–Planck systems for ion flow with density functional theory for hard-sphere potential: I–V relations and critical potentials. Part II: Numerics. J. Dyn. Differ. Equ. (to appear)

  56. Masmoudi N., Tayeb M.L.: Diffusion limit of a semiconductor Boltzmann–Poisson system. SIAM J. Math. Anal. 38, 1788–1807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mock M.S.: An example of nonuniqueness of stationary solutions in device models. COMPEL 1, 165–174 (1982)

    Article  Google Scholar 

  58. Nadler B., Schuss Z., Singer A., Eisenberg B.: Diffusion through protein channels: from molecular description to continuum equations. Nanotechnology 3, 439–442 (2003)

    Google Scholar 

  59. Nonner W., Eisenberg R.S.: Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-type calcium channels. Biophys. J. 75, 1287–1305 (1998)

    Article  Google Scholar 

  60. Noskov S.Y., Roux B.: Ion selectivity in potassium channels. Biophys. Chem. 124, 279–291 (2006)

    Article  Google Scholar 

  61. Noskov S.Y., Roux B.: Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J. Gen. Physiol. 129, 135–143 (2007)

    Article  Google Scholar 

  62. Noskov S.Y., Berneche S., Roux B.: Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004)

    Article  Google Scholar 

  63. Noskov S.Y., Im W., Roux B.: Ion permeation through the α-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson–Nernst–Planck electrodiffusion theory. Biophys. J. 87, 2299–2309 (2004)

    Article  Google Scholar 

  64. Park J.-K., Jerome J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: mathematical study. SIAM J. Appl. Math. 57, 609–630 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  65. Percus J.K.: Equilibrium state of a classical fluid of hard rods in an external field. J. Stat. Phys. 15, 505–511 (1976)

    Article  MathSciNet  Google Scholar 

  66. Percus J.K.: Model grand potential for a nonuniform classical fluid. J. Chem. Phys. 75, 1316–1319 (1981)

    Article  Google Scholar 

  67. Robledo A., Varea C.: On the relationship between the density functional formalism and the potential distribution theory for nonuniform fluids. J. Stat. Phys. 26, 513–525 (1981)

    Article  MATH  Google Scholar 

  68. Rosenfeld Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980–983 (1989)

    Article  Google Scholar 

  69. Rosenfeld Y.: Free energy model for the inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98, 8126–8148 (1993)

    Article  Google Scholar 

  70. Roth, R.: Fundamental measure theory for hard-sphere mixtures: a review. J. Phys.: Condens. Matter 22, 063102 (18 pp) (2010)

    Google Scholar 

  71. Roux, B.: Theory of transport in ion channels: from molecular dynamics simulations to experiments. In: Goodefellow, J. (ed.) Computer Simulation in Molecular Biology, Chap. 6, pp. 133–169. VCH, Weinheim (1995)

  72. Roux B., Crouzy S.: Theoretical studies of activated processes in biological ion channels. In: Berne, B.J., Ciccotti, G., Coker, D.F. (eds) Classical and Quantum Dynamics in Condensed Phase Simulations, pp. 445–462. World Scientific Ltd., Singapore (1998)

    Chapter  Google Scholar 

  73. Roux B., Allen T.W., Berneche S., Im W.: Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37, 15–103 (2004)

    Article  Google Scholar 

  74. Rubinstein I.: Multiple steady states in one-dimensional electrodiffusion with local electroneutrality. SIAM J. Appl. Math. 47, 1076–1093 (1987)

    Article  MathSciNet  Google Scholar 

  75. Rubinstein I.: Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  76. Saraniti M., Aboud S., Eisenberg R.: The simulation of ionic charge transport in biological ion channels: an introduction to numerical methods. Rev. Comput. Chem. 22, 229–294 (2005)

    Google Scholar 

  77. Schmidt M., L öwen H., Brader J.M., Evans R.: Density functional theory for a model colloid-polymer mixture: bulk fluid phases. J. Phys.: Condens. Matter 14, 9353–9382 (2002)

    Article  Google Scholar 

  78. Schuss Z., Nadler B., Eisenberg R.S.: Derivation of Poisson and Nernst–Planck equations in a bath and channel from a molecular model. Phys. Rev. E 64, 1–14 (2001)

    Article  Google Scholar 

  79. Singer A., Norbury J.: A Poisson–Nernst–Planck model for biological ion channels—an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70, 949–968 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  80. Singer A., Gillespie D., Norbury J., Eisenberg R.S.: Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: applications to ion channels. Eur. J. Appl. Math. 19, 541–560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  81. Steinr ück H.: Asymptotic analysis of the current–voltage curve of a pnpn semiconductor device. IMA J. Appl. Math. 43, 243–259 (1989)

    Article  MathSciNet  Google Scholar 

  82. Steinr ück H.: A bifurcation analysis of the one-dimensional steady-state semiconductor device equations. SIAM J. Appl. Math. 49, 1102–1121 (1989)

    Article  MathSciNet  Google Scholar 

  83. Tarazona P., Rosenfeld Y.: From zero-dimension cavities to free-energy functionals for hard disks and hard spheres. Phys. Rev. E 55, R4873–R4876 (1997)

    Article  Google Scholar 

  84. Tarazona P., Rosenfeld Y.: Free energy density functional from 0D cavities. In: Caccamo, C., Hansen, J.P., Stell, G. (eds) New Approaches to Problems in Liquid State Theory, pp. 293–302. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  85. Tin S.-K., Kopell N., Jones C.: Invariant manifolds and singularly perturbed boundary value problems. SIAM J. Numer. Anal. 31, 1558–1576 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  86. van der Straaten T.A., Kathawala G., Eisenberg R.S., Ravaioli U.: BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mol. Simul. 31, 151–171 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, S., Liu, W. Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part I: Analysis. J Dyn Diff Equat 24, 955–983 (2012). https://doi.org/10.1007/s10884-012-9277-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9277-y

Keywords

Mathematics Subject Classification

Navigation