Skip to main content
Log in

Global and Trajectory Attractors for a Nonlocal Cahn–Hilliard–Navier–Stokes System

Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The Cahn–Hilliard–Navier–Stokes system is based on a well-known diffuse interface model and describes the evolution of an incompressible isothermal mixture of binary fluids. A nonlocal variant consists of the Navier–Stokes equations suitably coupled with a nonlocal Cahn–Hilliard equation. The authors, jointly with P. Colli, have already proven the existence of a global weak solution to a nonlocal Cahn–Hilliard–Navier–Stokes system subject to no-slip and no-flux boundary conditions. Uniqueness is still an open issue even in dimension two. However, in this case, the energy identity holds. This property is exploited here to define, following J.M. Ball’s approach, a generalized semiflow which has a global attractor. Through a similar argument, we can also show the existence of a (connected) global attractor for the convective nonlocal Cahn–Hilliard equation with a given velocity field, even in dimension three. Finally, we demonstrate that any weak solution fulfilling the energy inequality also satisfies a dissipative estimate. This allows us to establish the existence of the trajectory attractor also in dimension three with a time dependent external force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abels H.: On a diffusive interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289, 45–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abels, H.: Longtime behavior of solutions of a Navier–Stokes/Cahn–Hilliard system. In: Proceedings of the Conference Nonlocal and Abstract Parabolic Equations and their Applications, vol. 86, pp. 9–19. Banach Center, Bedlewo (2009)

  4. Abels H., Feireisl E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57, 659–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson D.M., McFadden G.B., Wheeler A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  6. Badalassi V.E., Ceniceros H., Banerjee S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equation. J. Nonlinear Sci. 7 (1997), 475–502 ; Erratum, J. Nonlinear Sci. 8, 233 (1998)

    Google Scholar 

  8. Ball J.M.: Global attractors for damped semilinear wave equations. Discrete Contin. Dyn. Syst. 10, 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bates P.W., Han J.: The Neumann boundary problem for a nonlocal Cahn–Hilliard equation. J. Differ. Equ. 212, 235–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bates P.W., Han J.: The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation. J. Math. Anal. Appl. 311, 289–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyer F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20, 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Boyer F.: Nonhomogeneous Cahn–Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 225–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyer F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41–68 (2002)

    Article  MathSciNet  Google Scholar 

  14. Chepyzhov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics, vol. 49. American Mathematical Society, Providence (2002)

  15. Chepyzhov V.V., Vishik M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76, 913–964 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Cheskidov A., Foias C.: On global attractors of the 3D-Navier–Stokes equations. J. Differ. Equ. 231, 714–754 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colli P., Frigeri S., Grasselli M.: Global existence of weak solutions to a nonlocal Cahn–Hilliard– Navier–Stokes system. J. Math. Anal. Appl. 386, 428–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cutland N.J.: Global attractors for small samples and germs of 3D Navier–Stokes equations. Nonlinear Anal. 62, 265–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Doi, M.: Dynamics of domains and textures. In: McLeish, T.C. (ed.) Theoretical Challenges in the Dynamics of Complex Fluids , NATO-ASI Series, vol. 339, pp. 293–314. Kluwer Academic, Dordrecht (1997)

  20. Feng X.: Fully discrete finite element approximation of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase flows. SIAM J. Num. Anal. 44, 1049–1072 (2006)

    Article  MATH  Google Scholar 

  21. Flandoli F., Schmalfuss B.: Weak solutions and attractors for the 3-dimensional Navier–Stokes equations with nonregular force. J. Dynam. Differ. Equ. 11, 355–398 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Foias, C., Temam, R.: The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory. In: Proceedings of Directions in Partial Differential Equations, 1985, Mathematics Research Center and University, Madison, vol. 54, pp. 55–73. Academic Press, Boston (1987)

  23. Gajewski H.: On a nonlocal model of non-isothermal phase separation. Adv. Math. Sci. Appl. 12, 569–586 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Gajewski H., Zacharias K.: On a nonlocal phase separation model. J. Math. Anal. Appl. 286, 11–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gal C.G., Grasselli M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401–436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gal C.G., Grasselli M.: Trajectory attractors for binary fluid mixtures in 3D. Chinese Ann. Math. Ser. B 31, 655–678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gal C.G., Grasselli M.: Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn–Hilliard–Navier–Stokes system. Phys. D 240, 629–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grasselli M., Pražák D.: Longtime behavior of a diffuse interface model for binary fluid mixtures with shear dependent viscosity. Interfaces Free Bound. 13, 507–530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giacomin G., Lebowitz J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87, 37–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Giacomin G., Lebowitz J.L.: Phase segregation dynamics in particle systems with long range interactions. II. Phase motion. SIAM J. Appl. Math. 58, 1707–1729 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gurtin M.E., Polignone D., Viñals J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6, 8–15 (1996)

    Article  Google Scholar 

  32. Han J.: The Cauchy problem and steady state solutions for a nonlocal Cahn–Hilliard equation. Electron. J. Differ. Equ. 113, 9 (2004)

    Google Scholar 

  33. Haspot B.: Existence of global weak solution for compressible fluid models with a capillary tensor for discontinuous interfaces. Differ. Integr. Equ. 23, 899–934 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Hohenberg P.C., Halperin B.I.: Theory of dynamical critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  35. Jasnow D., Viñals J.: Coarse-grained description of thermo-capillary flow. Phys. Fluids 8, 660–669 (1996)

    Article  MATH  Google Scholar 

  36. Kapustyan A.V., Valero J.: Weak and strong attractors for the 3D Navier–Stokes system. J. Differ. Equ. 240, 249–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kay D., Styles V., Welford R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10, 5–43 (2008)

    MathSciNet  Google Scholar 

  38. Kim J., Kang K., Lowengrub J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kloeden P.E., Valero J.: The Kneser property of the weak solutions of the three dimensional Navier–Stokes equations. Discrete Contin. Dyn. Syst. 28, 161–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu C., Shen J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Londen S.-O., Petzeltová H.: Convergence of solutions of a non-local phase-field system. Discrete Contin. Dyn. Syst. Ser. S 4, 653–670 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Lowengrub J., Truskinovsky L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Marín-Rubio P., Real J.: ullback attractors for 2D-Navier–Stokes equations with delays in continuous and sub-linear operators. Discrete Contin. Dyn. Syst. 26, 989–1006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Morro A.: Phase-field models of Cahn–Hilliard Fluids and extra fluxes. Adv. Theor. Appl. Mech. 3, 409–424 (2010)

    Google Scholar 

  45. Rohde C.: On local and non-local Navier–Stokes-Korteweg systems for liquid-vapour phase transitions. Z. Angew. Math. Mech. 85, 839–857 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rohde, C.: A local and low-order Navier–Stokes-Korteweg system. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, pp. 315–337. American Mathematical Society, Providence (2010)

  47. Rosa R.M.S.: Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier–Stokes equations. J. Differ. Equ. 229, 257–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sell G.R.: Global attractors for the three-dimensional Navier–Stokes equations. J. Dynam. Differ. Equ. 8, 1–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shen J., Yang X.: Energy stable schemes for Cahn–Hilliard phase-field model of two-phase incompressible flows. Chinese Ann. Math. Ser. B 31, 743–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Starovoitov V.N.: The dynamics of a two-component fluid in the presence of capillary forces. Math. Notes 62, 244–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66. SIAM, Philadelphia (1995)

  52. Zhao L., Wu H., Huang H.: Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids. Commun. Math. Sci. 7, 939–962 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Grasselli.

Additional information

In memoriam Mark I. Vishik (1921–2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frigeri, S., Grasselli, M. Global and Trajectory Attractors for a Nonlocal Cahn–Hilliard–Navier–Stokes System. J Dyn Diff Equat 24, 827–856 (2012). https://doi.org/10.1007/s10884-012-9272-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9272-3

Keywords

Mathematics Subject Classification (2010)

Navigation