Skip to main content
Log in

Dynamics of a Canonical Electrostatic MEMS/NEMS System

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

The mass-spring model of electrostatically actuated microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS) is pervasive in the MEMS and NEMS literature. Nonetheless a rigorous analysis of this model does not exist. Here periodic solutions of the canonical mass-spring model in the viscosity dominated time harmonic regime are studied. Ranges of the dimensionless average applied voltage and dimensionless frequency of voltage variation are delineated such that periodic solutions exist. Parameter ranges where such solutions fail to exist are identified; this provides a dynamic analog to the static “pull-in” instability well known to MEMS/NEMS researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ai S. (2003). Multi-bump solutions to Carrier’s problem. J. Math. Anal. Appl. 277, 405–422

    Article  MATH  MathSciNet  Google Scholar 

  2. Ai S., and Hastings S.P. (2002). A shooting approach to layers and chaos in a forced Duffing equation. J. Diff. Eqns. 185, 389–436

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson M.J., Hill J.A., Fortunko C.M., Dogan N.S., and Moore R.D. (1995). BroadBand electrostatic transducers: modeling and experiments. J. Acoust. Soc. Am. 97, 262–272

    Article  Google Scholar 

  4. Bao M., and Wang W. (1996). Future of microelectromechanical systems (MEMS). Sensor Actuator A 56, 135–141

    Article  Google Scholar 

  5. Camon, H., Larnaudie, F., Rivoirard, F., and B. Jammes, B. (1999). Analytical simulation of a 1D single crystal electrostatic micromirror. Proc. Model. Simul. Microsyst., pp. 628–631.

  6. Chan E.K., Kan E.C., Dutton R.W., and Pinsky M.P. (1997). Nonlinear dynamic modeling of micromachined microwave switches. IEEE MTT-S Digest 3, 1511–1514

    Google Scholar 

  7. Chu, P. B., and Pister, K. S. J. (1994). Analysis of closed-loop Control of parallel-plate electrostatic microgrippers. Proc. IEEE Int. Conf. Robotics and Automation, pp. 820–825.

  8. R. Gao R., Wang Z.L., Bai Z., de Heer W.A., Dai L., and Gao M. (2000). Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625

    Article  Google Scholar 

  9. Hastings S.P., and McLeod J.B. (1991). On the periodic solutions of a forced second-order equation. J. Nonlin. Sci. 1, 225–245

    Article  MATH  MathSciNet  Google Scholar 

  10. Horenstein M, Bifano T., Pappas S., Perreault J., and Krishnamoorthy-Mali R. (1999). Real time optical correction using electrostatically actuated MEMS device. J. Electrostatics 46, 91–101

    Article  Google Scholar 

  11. Hirsch M.W., Smale S., and Devaney R.L. (2004). Diffenential equations, dynamical systems, and an introduction to chaos, 2nd edn. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  12. Kim P., and Lieber C.M. (1999). Nanotube nanotweezers. Science 286, 2148–2150

    Article  Google Scholar 

  13. Muldavin, J. B., and Rebeiz, G. M. (1999). 30 GHz Tuned MEMS Switches. IEEE MTT-S Digest, pp. 1511–1518.

  14. Nathanson H.C., Newell W.E., Wickstrom R.A., and Davis J.R. (1967). The resonant gate transistor. IEEE Tran. on Elec. Dev. 14, 117–133

    Article  Google Scholar 

  15. Poncharal P., Wang Z.L., Ugarte D., and de Heer W.A. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516

    Article  Google Scholar 

  16. Saif M.T.A., Alaca B.E., and Sehitoglu H. (1999). Analytical modeling of electrostatic membrane actuator micro pumps. IEEE J. Microelectromech. Syst. 8, 335–344

    Article  Google Scholar 

  17. Seeger, J. I., and Boser, B. E. (1999). Dynamics and Control of Parallel-Plate Actuators Beyond the Electrostatic Instability, Transducers ’99, pp. 474–477.

  18. Shi F., Ramesh P., and Murkherjee S. (1995). Simulation methods for micro- electro-mechanical structures (MEMS) with application to a microtweezer. Comput. Struct. 56, 769–783

    Article  Google Scholar 

  19. Tilmans H.A.C., Elwenspoek M., and Fluitman J.H.J. (1992). Micro resonant force gauges. Sensor Actuator A 30, 35–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangbing Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, S., Pelesko, J.A. Dynamics of a Canonical Electrostatic MEMS/NEMS System. J Dyn Diff Equat 20, 609–641 (2008). https://doi.org/10.1007/s10884-007-9094-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-007-9094-x

Keywords

Mathematics Subject Classification (1991)

Navigation