Skip to main content
Log in

Neurobehavioral Assessment of Children Presenting Diverse Congenital Cardiopathologies

  • Published:
Journal of Clinical Psychology in Medical Settings Aims and scope Submit manuscript

Abstract

Brain maturation in 1–36 month old children suffering from congenital cardiopathologies was assessed after a study of psychomotor development. The Rogers’ test (Rogers et al., Developmental programming for infants and young children. Volume 2. Early intervention developmental profile, Revised edition, ESL/ELT Michigan, Ann Arbor, 1981) was applied to 65 children, of whom 21 presented with simple cardiopathologies (CpS) and 22 with complex cardiopathologies (CpC). All children were matched by age, sex and socioeconomic status to 22 healthy children in a control group (C). Mean differences between the three groups were established by applying the Kruskal–Wallis test, and mean differences between the C and CpS/CpC groups were determined using the Mann–Whitney test. The proportion of cases evaluated as “low” in each group was calculated by applying the Rogers’ test, and a test of proportion differences was applied between the C and CpS/CpC groups. CpS children performed similarly to the C, whereas CpC children scored significantly lower than C children on all variables. It is highly likely that the suboptimal psychomotor performance observed in CpC children was due to compromised hemodynamics and related to subclinical immaturity of cerebral development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bellinger, D. C., Wypij, D., Duplessis, A. J., Rappaport, L. A., Jonas, R. A., Wernovsky, G., et al. (2003). Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: The Boston Circulatory Arrest Trial. Journal of Thoracic and Cardiovascular Surgery, 126, 1385–1396.

    Article  PubMed  Google Scholar 

  • Bellinger, D. C., Wypij, D., Kuban, K. C., Rappaport, L. A., Hickey, P. R., Wernovsky, G., et al. (1999). Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation, 100, 526–532.

    Article  PubMed  CAS  Google Scholar 

  • Brosig, C. L., Mussatto, K. A., Kuhn, E. M., & Tweddell, J. S. (2007). Psychosocial outcomes for preschool children and families after surgery for complex congenital heart disease. Pediatric Cardiology, 28, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Daliento, L., Mazzotti, E., Mongillo, E., Rotundo, M., & Dalla Volta, S. (2002). Life expectancy and quality of life in adult patients with congenital heart disease. Italian Heart Journal, 3, 339–347.

    PubMed  Google Scholar 

  • Galli, K., Kimmerman, R. A., Jarvik, G. P., Wernovsky, G., Kuypers, M. K., Clancy, R. R., et al. (2004). Periventricular leukomalacia is common after neonatal cardiac surgery. Journal of Thoracic Cardiovascular Surgery, 127, 692–704.

    Article  Google Scholar 

  • Gillum, R. F. (1994). Epidemiology of congenital heart disease in the United States. American Heart Journal, 127, 919–927.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J. I., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39, 1890–1900.

    Article  PubMed  Google Scholar 

  • Hövels-Gürich, H. H., Konrad, K., Skorzenski, D., Herpertz-Dahlmann, B., Messmer, B. J., & Seghaye, M. C. (2007). Attentional dysfunction in children after corrective cardiac surgery in infancy. Annals of Thoracic Surgery, 83, 1425–1430.

    Article  PubMed  Google Scholar 

  • Hövels-Gürich, H. H., Seghaye, M. C., Däbritz, S., Messmer, B. J., & von Bernuth, G. (1997). Cognitive and motor development in preschool and school-aged children after neonatal arterial switch operation. Journal of Thoracic Cardiovascular Surgery, 114, 578–585.

    Article  Google Scholar 

  • Hövels-Gürich, H. H., Seghaye, M. C., Schnitker, R., Wiesner, M., Huber, W., Minkenberg, R., et al. (2002). Long-term neurodevelopmental outcomes in school-aged children after neonatal arterial switch operation. Journal of Thoracic Cardiovascular Surgery, 124, 448–458.

    Article  Google Scholar 

  • Hövels-Gürich, H. H., Seghaye, M. C., Sigler, M., Kotlarek, F., Bartl, A., Neuser, J., et al. (2001). Neurodevelopmental outcome related to cerebral risk factors in children after neonatal arterial switch operation. Annals of Thoracic Surgery, 71, 881–888.

    Article  PubMed  Google Scholar 

  • Kurth, C. D., Steven, J. L., Montenegro, L. M., Watzman, H. M., Gaynor, J. W., Spray, T. L., et al. (2001). Cerebral oxygen saturation before congenital heart surgery. Annals of Thoracic Surgery, 72, 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Licht, D. J., Agner, S., Montenegro, L. M., Nicolson, S. C., Silvestre, D., Tabbutt, S., et al. (2006). Preoperative MRI abnormalities are common in full-term infants with severe CHD and resemble lesions in pre-term infants. Neuropediatrics, 37(Suppl 1), S1–S183.

    Google Scholar 

  • Licht, D. J., Shera, D. M., Clancy, R. R., Wernovsky, G., Montenegro, L. M., Nicolson, S. C., et al. (2009). Brain maturation is delayed in infants with complex congenital heart defects. Journal of Thoracic Cardiovascular Surgery, 137, 529–537.

    Article  Google Scholar 

  • Limperopoulos, C., Majnemer, A., Shevell, M. I., Rohlicek, C., Rosenblatt, B., Tchervenkov, C., et al. (2002). Predictors of developmental disabilities after open-heart surgery in young children with congenital heart defects. Journal of Pediatrics, 141, 51–58.

    Article  PubMed  Google Scholar 

  • Limperopoulos, C., Majnemer, A., Shevell, M. I., Rosenblatt, B., Rohlicek, C., & Tchervenkov, C. (1999). Neurologic status of newborns with congenital heart defects before open-heart surgery. Pediatrics, 103, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Limperopoulos, C., Majnemer, A., Shevell, M. I., Rosenblatt, B., Rohlicek, C., Tchervenkov, C., et al. (2001). Functional limitations in young children with congenital heart defects after cardiac surgery. Pediatrics, 108, 1325–1331.

    Article  PubMed  CAS  Google Scholar 

  • Mahle, W. T., & Wernovsky, G. (2001). Long-term developmental outcome of children with complex congenital heart disease. Clinical Perinatology, 28, 235–247.

    Article  CAS  Google Scholar 

  • Majnemer, A., Limperopoulos, C., Shevell, M., Rohlicek, C., Rosenblatt, B., & Tchervenkov, C. (2008). Developmental and functional outcomes at school entry in children with congenital heart defects. Journal of Pediatrics, 153, 55–60.

    Article  PubMed  Google Scholar 

  • Majnemer, A., Limperopoulos, C., Shevell, M., Rosenblatt, B., Rohlicek, C., & Tchervenkov, C. (2006). Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. Journal of Pediatrics, 148, 72–77.

    Article  PubMed  Google Scholar 

  • Massaro, A. N., El-Dib, M., Glass, P., & Aly, H. (2008). Factors associated with adverse neurodevelopmental outcomes in infants with congenital heart diseases. Brain Development, 30, 437–446.

    Article  PubMed  Google Scholar 

  • McQuillen, P. S., Barkovich, A. J., Hamrick, S. E., Perez, M., Ward, P., Glidden, D. V., et al. (2007). Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke, 38, 736–741.

    Article  PubMed  Google Scholar 

  • Mendieta-Alcántara, G. G., Otero-Ojeda, G. A., Motolinía, R., Colmenero, M., Pliego-Rivero, F. B., Fernández, T., et al. (2011). Alteraciones electroencefalográficas en niños con cardiopatías congénitas severas. Revista Ecuatoriana de Neurología, 20, 60–67.

    Google Scholar 

  • Miatton, M., De Wolf, D., François, K., Thiery, E., & Vingerhoets, G. (2006). Neurocognitive consequences of surgically corrected congenital heart defects: A review. Neuropsychology Review, 16, 65–85.

    Article  PubMed  CAS  Google Scholar 

  • Miatton, M., De Wolf, D., François, K., Thiery, E., & Vingerhoets, G. (2007a). Intellectual, neuropsychological, and behavioral functioning in children with tetralogy of Fallot. Journal of Thoracic and Cardiovascular Surgery, 133, 449–455.

    Article  PubMed  Google Scholar 

  • Miatton, M., De Wolf, D., François, K., Thiery, E., & Vingerhoets, G. (2007b). Neuropsychological performance in school-aged children with surgically corrected congenital heart disease. Journal of Pediatrics, 151, 73–78.

    Article  PubMed  Google Scholar 

  • Miller, S. P., McQuillen, P. S., Hamrick, S., Xu, D., Glidden, D. V., Charlton, N., et al. (2007). Abnormal brain development in newborns with congenital heart disease. New England Journal of Medicine, 357, 1928–1938.

    Article  PubMed  CAS  Google Scholar 

  • Oates, R. K., Simpson, J. M., Cartmill, T. B., & Turnbull, J. A. (1995). Intellectual function and age of repair in cyanotic congenital heart disease. Archives of Diseases in Childhood, 72, 298–301.

    Article  CAS  Google Scholar 

  • Palencia, R. (2002). Complicaciones neurológicas del paciente con cardiopatía. Revista de Neurología, 35, 279–285.

    PubMed  CAS  Google Scholar 

  • Palmen, M., de Jong, P. L., Klieverik, L. M. A., Venema, A. C., Meijboom, F. J., & Bogers, J. J. C. (2008). Long-term follow-up after repair of Ebstein’s anomaly. European Journal of Cardio-Thoracic Surgery, 34, 48–54.

    Article  PubMed  Google Scholar 

  • Rogers, S. J., Donovan, C. M., D’Eugenio S., Brown, S. L., Lynch, E. W., Moersch, M. S., et al. (1981). Developmental programming for infants and young children. Volume 2. Early intervention developmental profile (Revised ed.). Ann Arbor, MI: ESL/ELT Michigan.

  • Sarajuuri, A., Jokinen, E., Puosi, R., Eronen, M., Mildh, L., Mattila, I., et al. (2007). Neurodevelopmental and neuroradiologic outcomes in patients with univentricular heart aged 5 to 7 years: Related risk factor analysis. Journal of Thoracic and Cardiovascular Surgery, 133, 1524–1532.

    Article  PubMed  Google Scholar 

  • Sharma, R., Choudary, S. K., Mohan, M. R., Padma, M. V., Jain, S., Bhardwaj, M., et al. (2000). Neurological evaluation and intelligence testing in the child with operated congenital heart disease. Annals of Thoracic Surgery, 70, 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Shillingford, A. J., Glanzman, M. M., Ittenbach, R. F., Clancy, R. R., Gaynor, J. W., & Wernovsky, G. (2008). Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics, 121, 759–767.

    Article  Google Scholar 

  • Simons, J. S., Glidden, R., Sheslow, D., & Pizarro, C. (2010). Intermediate neurodevelopmental outcome after repair of Ventricular Septal Defect. Annals of Thoracic Surgery, 90, 1586–1592.

    Article  PubMed  Google Scholar 

  • Wernovsky, G., Shillingford, A. J., & Gaynor, J. W. (2005). Central nervous system outcomes in children with complex congenital heart disease. Current Opinion in Cardiology, 20, 94–99.

    Article  PubMed  Google Scholar 

  • Wernovsky, G., Stiles, K. M., Grauvreau, K., Gentles, T. L., duPlessis, A. J., Bellinger, D. C., et al. (2000). Cognitive development after the Fontan operation. Circulation, 102, 883–889.

    Article  PubMed  CAS  Google Scholar 

  • Wray, J., & Sensky, T. (1999). Controlled study of preschool development after surgery for congenital heart disease. Archives of Diseases in Childhood, 80, 511–516.

    Article  CAS  Google Scholar 

  • Wray, J., & Sensky, T. (2001). Congenital heart disease and cardiac surgery in childhood: Effects on cognitive function and academic ability. Heart, 85, 687–691.

    Article  PubMed  CAS  Google Scholar 

  • Wren, C., & O’Sullivan, J. J. (2001). Survival with congenital heart disease and need for follow-up in adult life. Heart, 85, 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Wright, M., & Nolan, T. (1994). Impact of cyanotic heart disease on school performance. Archives of Diseases in Childhood, 71, 64–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria A. Otero-Ojeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcayo-Mercado, M.R., Otero-Ojeda, G.A., Pliego-Rivero, F.B. et al. Neurobehavioral Assessment of Children Presenting Diverse Congenital Cardiopathologies. J Clin Psychol Med Settings 20, 71–78 (2013). https://doi.org/10.1007/s10880-012-9314-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10880-012-9314-3

Keywords

Navigation