, Volume 26, Issue 2, pp 310-332
Date: 09 Mar 2012

The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order of all candidates. Recently, this approach was generalized to bucket orders, which allow ties.

In this work we further generalize and consider total, bucket, interval and partial orders. The disagreement between two orders is measured by the nearest neighbor Spearman footrule distance, which has not been studied so far. For two bucket orders and for a total and an interval order the nearest neighbor Spearman footrule distance is shown to be computable in linear time, whereas for a total and a partial order the computation is NP-hard, 4-approximable and fixed-parameter tractable.

Moreover, in contrast to the well-known efficient solution of the rank aggregation problem for total orders, we prove the NP-completeness for bucket orders and establish a 4-approximation.