Skip to main content
Log in

Phenylephrine increases near-infrared spectroscopy determined muscle oxygenation in men

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Phenylephrine increases mean arterial pressure (MAP) by enhanced total peripheral resistance (TPR) but near-infrared spectroscopy (NIRS) determined muscle oxygenation (SmO2) increases. We addressed that apparent paradox during supine rest and head-up tilt (HUT). Variables were determined ± phenylephrine in males during supine rest (n = 17) and 40° HUT (n = 7). MAP, stroke volume (SV), heart rate (HR), and TPR were derived by Modelflow® and NIRS determined biceps SmO2 and (tibial) bone oxygenation (StibialO2). For ten subjects, cardiac filling and the diameter of the inferior caval vein (ICV collapsibility index: ((ICVexpiration − ICVinspiration)/ICVexpiration) × 100) were assessed by ultrasound. Pancreatic polypeptide (PP) and atrial natriuretic peptide (proANP) in plasma were determined by immunoassay. Brachial artery blood flow was assessed by ultrasound and skin oxygenation (SskinO2) monitored by white light spectroscopy. Phenylephrine increased MAP by 34% and TPR (62%; P < 0.001) during supine rest. The ICV collapsibility index decreased (24%; P < 0.001) indicating augmented cardiac preload although volume of the left atrium and ventricle did not change. SV increased (18%; P < 0.001) as HR decreased (24%; P < 0.001). ProANP increased by 9% (P = 0.002) with unaffected PP. Brachial artery blood flow tended to decrease while SskinO2 together with StibialO2 decreased by 11% (P = 0.026) and 20% (P < 0.001), respectively. Conversely, phenylephrine increased SmO2 (9%) and restored the HUT elicited decrease in SmO2 (by 19%) along with SV (P = 0.02). Phenylephrine reduces skin and bone oxygenation and tends to reduce arm blood flow, suggesting that the increase in SmO2 reflects veno-constriction with consequent centralization of the blood volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murkin JM. Monitoring cerebral oxygenation. Can J Anaesth. 1994;41(11):1027–32.

    Article  CAS  PubMed  Google Scholar 

  2. Scheeren TW, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 2012;26(4):279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Madsen P, Olesen HL, Klokker M, Secher NH. Peripheral venous oxygen saturation during head-up tilt induced hypovolaemic shock in humans. Scand J Clin Lab Invest. 1993;53(4):411–6.

    Article  CAS  PubMed  Google Scholar 

  4. Sander-Jensen K, Secher NH, Astrup A, Christensen NJ, Giese J, Schwartz TW, Warberg J, Bie P. Hypotension induced by passive head-up tilt: endocrine and circulatory mechanisms. Am J Physiol. 1986;251(4):742–8.

    Google Scholar 

  5. Wallin BG, Sundlof G. Sympathetic outflow to muscles during vasovagal syncope. J Auton Nerv Syst. 1982;6(3):287–91.

    Article  CAS  PubMed  Google Scholar 

  6. Matzen S, Perko G, Groth S, Friedman DB, Secher NH. Blood volume distribution during head-up tilt induced central hypovolaemia in man. Clin Physiol. 1991;11(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  7. Sander-Jensen K, Mehlsen J, Stadeager C, Christensen NJ, Fahrenkrug J, Schwartz TW, Warberg J, Bie P. Increase in vagal activity during hypotensive lower-body negative pressure in humans. Am J Physiol. 1988;255(1):149–56.

    Google Scholar 

  8. Sørensen H, Rasmussen P, Sato K, Persson S, Olesen ND, Nielsen HB, Olsen NV, Ogoh S, Secher NH. External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration. Br J Anaesth. 2014;113(3):452–8.

    Article  PubMed  Google Scholar 

  9. Poterman M, Vos JJ, Vereecke HE, Struys MM, Vanoverschelde H, Scheeren TW, Kalmar AF. Differential effects of phenylephrine and norepinephrine on peripheral tissue oxygenation during general anaesthesia: a randomised controlled trial. Eur J Anaesthesiol. 2015;32(8):571–80.

    Article  CAS  PubMed  Google Scholar 

  10. Sørensen H, Secher NH, Siebenmann C, Nielsen HB, Kohl-Bareis M, Lundby C, Rasmussen P. Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology. 2012;117(2):263–70.

    Article  PubMed  Google Scholar 

  11. Salisbury PF, Cross CE. Reflex effects of ventricular distention. Circ Res. 1960;8(3):530–4.

    Article  CAS  PubMed  Google Scholar 

  12. Mark AL, Abboud FM, Schmid PG, Heistad DD. Reflex vascular responses to left ventricular outflow obstruction and activation of ventricular baroreceptors in dogs. J Clin Invest. 1973;52(5):1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mark AL, Kioschos JM, Abboud FM, Heistad DD, Schmid PG. Abnormal vascular responses to exercise in patients with aortic stenosis. J Clin Investig. 1973;52(5):1138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bogert LW, van Lieshout JJ. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol. 2005;90(4):437–46.

    Article  PubMed  Google Scholar 

  15. Suzuki S, Takasaki S, Ozaki T, Kobayashi Y. A tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE. 1999;3597(1):582–92.

    Article  CAS  Google Scholar 

  16. Reisner SA, Lysyansky P, Agmon Y, Mutlak D, Lessick J, Friedman Z. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr. 2004;17(6):630–3.

    Article  PubMed  Google Scholar 

  17. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the european association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.

    Article  PubMed  Google Scholar 

  18. Matzen S, Knigge U, Schutten HJ, Warberg J, Secher NH. Atrial natriuretic peptide during head-up tilt induced hypovolaemic shock in man. Acta Physiol Scand. 1990;140(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz TW, Holst JJ, Fahrenkrug J, Jensen SL, Nielsen OV, Rehfeld JF, de Muckadell OB, Stadil F. Vagal, cholinergic regulation of pancreatic polypeptide secretion. J Clin Invest. 1978;61(3):781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Truijen J, Kim YS, Krediet CT, Stok WJ, Kolgen RS, Colier WN, Secher NH, van Lieshout JJ. Orthostatic leg blood volume changes assessed by near-infrared spectroscopy. Exp Physiol. 2012;97(3):353–61.

    Article  CAS  PubMed  Google Scholar 

  21. Davis SL, Fadel PJ, Cui J, Thomas GD, Crandall CG. Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress. J Appl Physiol. 2006;100(1):221–4.

    Article  PubMed  Google Scholar 

  22. Daly Ide B, Verney EB. Localization of receptors involved in the reflex regulation of the heart rate. J Physiol. 1927;62(4):330–40.

    Article  PubMed  Google Scholar 

  23. Teboul J-L, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, Squara P, Vincent J-L, Scheeren TW. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42(9):1350–9.

    Article  PubMed  Google Scholar 

  24. Leone M, Blidi S, Antonini F, Meyssignac B, Bordon S, Garcin F, Charvet A, Blasco V, Albanese J, Martin C. Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock. Anesthesiology. 2009;111(2):366–71.

    Article  CAS  PubMed  Google Scholar 

  25. Claverias L, Marí M, Marín-Corral J, Magret M, Trefler S, Bodí M, García-España A, Yébenes JC, Pascual S, Gea J, Rodríguez A. The prognostic value of muscle regional oxygen saturation index in severe community-acquired pneumonia: a prospective observational study. J Intensive Care. 2016;4(1):1–9.

    Article  Google Scholar 

  26. Jansen JR, Schreuder JJ, Mulier JP, Smith NT, Settels JJ, Wesseling KH. A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth. 2001;87(2):212–22.

    Article  CAS  PubMed  Google Scholar 

  27. Ji F, Li J, Fleming N, Rose D, Liu H. Reliability of a new 4th generation FloTrac algorithm to track cardiac output changes in patients receiving phenylephrine. J Clin Monit Comput. 2015;29(4):467–73.

    Article  PubMed  Google Scholar 

  28. Meng L, Tran NP, Alexander BS, Laning K, Chen G, Kain ZN, Cannesson M. The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal doppler cardiac output measurements. Anesth Analg. 2011;113(4):751–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wood PW, Choy JB, Nanda NC, Becher H. Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography. 2013;31(1):87–100.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ganio MS, Overgaard M, Seifert T, Secher NH, Johansson PI, Meyer MA, Crandall CG. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men. Am J Physiol Heart Circ Physiol. 2012;302(8):1756–61.

    Article  Google Scholar 

  31. Bickler P, Feiner J, Rollins M, Meng L. Tissue oximetry and clinical outcomes. Anesth Analg 2016.

  32. Nygren A, Thoren A, Ricksten SE. Vasopressors and intestinal mucosal perfusion after cardiac surgery: Norepinephrine vs. phenylephrine. Crit Care Med. 2006;34(3):722–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful for the effort made by the participating subjects.

Funding

The study was founded by a grant from Ehrenreich’s Fond (6000567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sørensen.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sørensen, H., Thomsen, J.H., Meyer, A.S.P. et al. Phenylephrine increases near-infrared spectroscopy determined muscle oxygenation in men. J Clin Monit Comput 31, 1159–1166 (2017). https://doi.org/10.1007/s10877-016-9965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-016-9965-y

Keywords

Navigation