Skip to main content

Advertisement

Log in

Commentary

The value of intraoperative neurophysiological monitoring: evidence, equipoise and outcomes

  • Review Paper
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The use of intraoperative neurophysiological monitoring (IONM) has grown despite an absence of randomized controlled trials that might unequivocally demonstrate improved outcomes. At issue is how to demonstrate value when other evidence indicates patient harms (opportunity cost) if IONM is withheld for the sake of randomization. In this article we review other non-randomized methods to assess the effects of IONM on post-operative outcomes. We also examine how clinical equipoise may resolve whether (or not) an anticipated controlled study is ethical. We conclude that the value of IONM in a particular surgical setting should be determined by a benefits/harms analysis based on all the available evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ney J, van der Goes D, Nuwer M, et al. WriteClick: evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 2012;79:292–4.

    Article  PubMed  Google Scholar 

  2. Sala F. Intraoperative neurophysiology is here to stay. Childs Nerv Syst. 2010;26:413–7.

    Article  PubMed  Google Scholar 

  3. Brignardello-Petersen R, Ioannidis J, Tomlinson G, Guyatt G. Surprising results of randomized trials. In: Guyatt G, Rennie D, Meade M, Cook D, editors. Users’ guides to the medical literature. 3rd ed. New York: McGraw Hill; 2015. p. 107–34.

    Google Scholar 

  4. Djulbegovic B, Guyatt GH, Ashcroft RE. Epistemologic inquiries in evidence-based medicine. Cancer Control. 2009;16:158–68.

    PubMed  Google Scholar 

  5. IOM (Institute of Medicine), editor. Clinical practice guidelines we can trust. Washington, D.C.: National Academies Press; 2011.

    Google Scholar 

  6. Djulbegovic B, Kumar A, Kaufman RM, Tobian A, Guyatt GH. Quality of evidence is a key determinant for making a strong GRADE guidelines recommendation. J Clin Epidemiol. 2015;68:727–32.

    Article  PubMed  Google Scholar 

  7. Marshall G, Blacklock JWS, Cameron C, et al. Streptomycin treatment of pulmonary tuberculosis. Br Med J. 1948;2:769–82.

    Article  Google Scholar 

  8. Meier P. The biggest public health experiments ever: the 1954 field trial of the Salk poliomyelitis vaccine. In: Tanur J, Mosteller F, Kruskal W, Pieters R, Rising G, editors. Statistics: a guide to the unknown. San Francisco: Holden-Day Inc; 1972. p. 2–13.

    Google Scholar 

  9. Beecher HK. Ethics and clinical research. N Engl J Med. 1966;274:1354–60.

    Article  CAS  PubMed  Google Scholar 

  10. Jones JH. Bad blood: the Tuskegee syphilis experiment. New York: The Free Press; 1993.

    Google Scholar 

  11. Gordon B, Prentice E. Protection of human subjects in the United States: a short history. J Public Health Manag Pract. 2000;6:1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Jonas H. Philosophical reflections on experimenting with human subjects. Daedalus. 1969;98:219–47.

    Google Scholar 

  13. Ramsey P. The patient as person: explorations in medical ethics. New Haven: Yale University Press; 1970.

    Google Scholar 

  14. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. 64 WMA General Assembly, Fortaleza, Brazil, October 2013. http://www.wna.net/en/30publications/10policies/b3/. Accessed 28 July 2016.

  15. United States. National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, The Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research. [Bethesda, Md.]; Washington: The Commission; For sale by the Supt. of Docs., U.S. Govt. Print. Off; 1978.

  16. Beauchamp TL, Childress JF. Principles of biomedical ethics. New York: Oxford University Press; 2013.

    Google Scholar 

  17. Emanuel EJ, Wendler D, Grady C. What makes clinical research ethical? JAMA. 2000;283:2701–11.

    Article  CAS  PubMed  Google Scholar 

  18. Freedman B. Equipoise and the ethics of clinical research. N Engl J Med. 1987;317:141–5.

    Article  CAS  PubMed  Google Scholar 

  19. Fried C. Medical experimentation: personal integrity and social policy. Amsterdam: North-Holland Pub Co; 1974.

    Google Scholar 

  20. Karlawish JH, Lantos J. Community equipoise and the architecture of clinical research. Camb Q Healthc Ethics. 1997;6:385–96.

    Article  CAS  PubMed  Google Scholar 

  21. Joffe S. Limits to research risks. In: Miller F, editor. The ethical challenges of human research: selected essays. Oxford: Oxford University Press; 2012. p. 36–47.

    Chapter  Google Scholar 

  22. Miller FG, Joffe S. Equipoise and the dilemma of randomized clinical trials. N Engl J Med. 2011;364:476–80.

    Article  CAS  PubMed  Google Scholar 

  23. Miller FG. Ethical issues in research with healthy volunteers: risk-benefit assessment. Clin Pharmacol Ther. 2003;74:513–5.

    Article  PubMed  Google Scholar 

  24. Prasad V, Cifu A, Ioannidis JPA. Reversals of established medical practices: evidence to abandon ship. JAMA. 2012;307:37–8.

    Article  CAS  PubMed  Google Scholar 

  25. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo—the cardiac arrhythmia suppression trial. N Engl J Med. 1991;324:781–8.

    Article  CAS  PubMed  Google Scholar 

  26. Manson JE, Hsia J, Johnson KC, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003;349:523–34.

    Article  CAS  PubMed  Google Scholar 

  27. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.

    Article  CAS  PubMed  Google Scholar 

  28. Benatar M. Clinical equipoise and treatment decisions in cervical spondylotic myelopathy. Can J Neurol Sci. 2007;34:47–52.

    Article  PubMed  Google Scholar 

  29. Ghogawala Z, Coumans JV, Benzel EC, Stabile LM, Barker FG 2nd. Ventral versus dorsal decompression for cervical spondylotic myelopathy: surgeons’ assessment of eligibility for randomization in a proposed randomized controlled trial: results of a survey of the Cervical Spine Research Society. Spine. 2007;32:429–36.

    Article  PubMed  Google Scholar 

  30. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. GRADE working group. The grading of recommendations assessment, development and evaluation working group. GRADE. 2016. http://www.gradeworkinggroup.org/. Accessed 22 Jan 2016.

  32. Every-Palmer S, Howick J. How evidence-based medicine is failing due to biased trials and selective publication. J Eval Clin Pract. 2014;20:908–14.

    Article  PubMed  Google Scholar 

  33. Evaniew N, Files C, Smith C, et al. The fragility of statistically significant findings from randomized trials in spine surgery: a systematic survey. Spine J. 2015;15:2188–97.

    Article  PubMed  Google Scholar 

  34. Neuman MD, Bosk CL, Fleisher LA. Learning from mistakes in clinical practice guidelines: the case of perioperative beta-blockade. BMJ. 2014;23:957–64.

    Google Scholar 

  35. Brady AR, Gibbs JS, Greenhalgh RM, Powell JT, Sydes MR, POBBLE trial investigators. Perioperative β-blockade (POBBLE) for patients undergoing infrarenal vascular surgery: results of a randomized double-blind controlled trial. J Vasc Surg. 2005;41:602–9.

    Article  CAS  PubMed  Google Scholar 

  36. Juul AB, Wetterslev J, Gluud C, et al. Effect of perioperative β blockade in patients with diabetes undergoing major non-cardiac surgery: randomised placebo controlled, blinded multicentre trial. BMJ. 2006;332:1482–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang H, Raymer K, Butler R, Parlow J, Roberts R. The effects of perioperative β-blockade: results of the Metoprolol after Vascular Surgery (MaVS) study, a randomized controlled trial. Am Heart J. 2006;152:983–90.

    Article  CAS  PubMed  Google Scholar 

  38. Concato J. Observational versus experimental studies: what’s the evidence for a hierarchy? NeuroRx. 2004;1:341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Guyatt GH, Cook DJ, Jaeschke R, Pauker SG, Schünemann HJ. Grades of recommendation for antithrombotic agents: American College of Chest Physicians evidence-based clinical practice guidelines (8th Ed). CHEST J. 2008;133:123S–31S.

    Article  Google Scholar 

  40. Guyatt GH, Alonso-Coello P, Vandvik PO. Experience with GRADE. J Clin Epidemiol. 2012;65:1243–4.

    Article  PubMed  Google Scholar 

  41. Holdefer RN, MacDonald DB, Guo L, Skinner SA. An evaluation of motor evoked potential surrogate endpoints during intracranial vascular procedures. Clin Neurophysiol. 2016;127:1717–25.

    Article  CAS  PubMed  Google Scholar 

  42. Guyatt GH, Oxman AD, Sultan S, et al. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol. 2011;64:1311–6.

    Article  PubMed  Google Scholar 

  43. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. IOM (Institute of Medicine). Evaluation of biomarkers and surrogate endpoints in chronic disease. Washington, D.C.: National Academies Press; 2010.

    Google Scholar 

  45. Alexander PE, Brito JP, Neumann I, et al. World Health Organization strong recommendations based on low-quality evidence (study quality) are frequent and often inconsistent with GRADE guidance. J Clin Epidemiol. 2016;72:98–106.

    Article  PubMed  Google Scholar 

  46. Alexander PE, Bero L, Montori VM, et al. World Health Organization recommendations are often strong based on low confidence in effect estimates. J Clin Epidemiol. 2014;67:629–34.

    Article  PubMed  Google Scholar 

  47. Scoliosis Research Society. Neuromonitoring information statement. 2009. http://srs.org/about-srs/quality-and-safety/position-statements/neuromonitoring-information-statement. Accessed 28 July 2016.

  48. Sala F, Di Rocco C. Intraoperative neurophysiological monitoring in neurosurgery: moving the debate from evidence and cost-effectiveness to education and training. World Neurosurg. 2015;83:32–4.

    Article  PubMed  Google Scholar 

  49. Neuloh G, Schramm J. Evoked potential monitoring during surgery for intracranial aneurysms. In: Nuwer MR, editor. Handbook of clinical neurophysiology. 8th ed. Amsterdam: Elsevier; 2008. p. 801–14.

    Google Scholar 

  50. MacDonald DB, Deletis V. Safety issues during surgical monitoring. In: Nuwer MR, editor. Handbook of clinical neurophysiology. 8th ed. Amsterdam: Elsevier; 2008. p. 882–98.

    Google Scholar 

  51. Dengler J, Cabraja M, Faust K, Picht T, Kombos T, Vajkoczy P. Intraoperative neurophysiological monitoring of extracranial–intracranial bypass procedures. J Neurosurg. 2013;119:207–14.

    Article  PubMed  Google Scholar 

  52. Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100:389–99.

    Article  PubMed  Google Scholar 

  53. Sala F, Palandri G, Basso E, et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58:1129–43.

    Article  PubMed  Google Scholar 

  54. Yeon JY, Seo DW, Hong SC, Kim JS. Transcranial motor evoked potential monitoring during the surgical clipping of unruptured intracranial aneurysms. J Neurol Sci. 2010;293:29–34.

    Article  PubMed  Google Scholar 

  55. Yue Q, Zhu W, Gu Y, et al. Motor evoked potential monitoring during surgery of middle cerebral artery aneurysms: a cohort study. World Neurosurg. 2014;82:1091–9.

    Article  PubMed  Google Scholar 

  56. Cole T, Veeravagu A, Zhang M, Li A, Ratliff JK. Intraoperative neuromonitoring in single-level spinal procedures: a retrospective propensity score-matched analysis in a national longitudinal database. Spine. 2014;39:1950–9.

    Article  PubMed  Google Scholar 

  57. Ney JP, van der Goes DN, Nuwer MR. Letters. Spine. 2015;40:667.

    Article  PubMed  Google Scholar 

  58. Traynelis VC, Abode-Iyamah KO, Leick KM, Bender SM, Greenlee JD. Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. J Neurosurg Spine. 2012;16:107–13.

    Article  PubMed  Google Scholar 

  59. Skinner SA, Rippe DM. Threshold testing of lumbosacral pedicle screws: a reappraisal. J Clin Neurophysiol. 2012;29:493–501.

    Article  PubMed  Google Scholar 

  60. Eccher MA, Ghogawala Z, Steinmetz MP. The possibility of clinical trials in neurophysiologic intraoperative monitoring: a review. J Clin Neurophysiol. 2014;31:106–11.

    Article  PubMed  Google Scholar 

  61. Bai YS, Niu YF, Chen ZQ, et al. Comparison of the pedicle screws placement between electronic conductivity device and normal pedicle finder in posterior surgery of scoliosis. J Spinal Disord Tech. 2013;26:316–20.

    Article  PubMed  Google Scholar 

  62. Song J, Lang L, Zhu W, et al. Application of intraoperative motor evoked potential monitoring during giant internal carotid artery aneurysm surgery using prolonged temporary occlusion. Acta Neurochir. 2015;157:1833–40.

    Article  PubMed  Google Scholar 

  63. Farrokhyar F, Karanicolas PJ, Thoma A, et al. Randomized controlled trials of surgical interventions. Ann Surg. 2010;251:409–16.

    Article  PubMed  Google Scholar 

  64. Stadhouder A, Oner FC, Wilson KW, et al. Surgeon equipoise as an inclusion criterion for the evaluation of nonoperative versus operative treatment of thoracolumbar spinal injuries. Spine J. 2008;8:975–81.

    Article  CAS  PubMed  Google Scholar 

  65. Howick J, Cohen BA, McCulloch P, Thompson M, Skinner SA. Foundations for evidence-based intraoperative neurophysiological monitoring. Clin Neurophysiol. 2016;127:81–90.

    Article  PubMed  Google Scholar 

  66. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.

    Article  Google Scholar 

  67. Glasziou P, Chalmers I, Rawlins M, McCulloch P. When are randomised trials unnecessary? Picking signal from noise. BMJ. 2007;334:349–51.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Negrini S, Minozzi S, Bettany-Saltikov J, et al. Braces for idiopathic scoliosis in adolescents. Cochrane Database Syst Rev. 2015;. doi:10.1002/14651858.

    PubMed  Google Scholar 

  69. Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Design of the bracing in adolescent idiopathic scoliosis trial (BrAIST). Spine. 2013;38:1832–41.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369:1512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Skinner SA, Holdefer RN. IONM evidence: putting the work and insight of Téllez et al. in context. Clin Neurophysiol. 2016;127:1015–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Skinner.

Ethics declarations

Conflict of interest

Dr. Holdefer reports no conflicts of interest. Dr. Skinner receives a patent royalty from Medtronic, Inc. Neither author received funding for the authorship of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holdefer, R.N., Skinner, S.A. Commentary. J Clin Monit Comput 31, 657–664 (2017). https://doi.org/10.1007/s10877-016-9910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-016-9910-0

Keywords

Navigation