Skip to main content

Advertisement

Log in

Frequency domain analysis of cerebral near infrared spectroscopy signals during application of an impedance threshold device in spontaneously ventilating volunteers

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Currently available near infrared spectroscopy (NIRS) devices are unable to discriminate between arterial and venous blood, a potential source of artifact. The purpose of this study was to test the hypothesis that oscillations in NIR signals at the respiratory and cardiac frequency could be attributed to venous and arterial blood, respectively, and thereby isolated. After written informed consent was obtained, a two-wavelength NIRS device was placed over the left frontal cortex in 20 volunteers. After 5 min of unimpeded spontaneous ventilation, an impedance threshold device (ITD, average resistance—7 cm H2O) was applied and an additional two minutes of data recorded. Tissue saturation (StO2) calculated at the ventilatory and cardiac frequencies was compared to non-pulsatile StO2, before and after application of the ITD using spectral peak and power algorithms. The ITD increased non-pulsatile cerebral saturation by 3.6 %. The ITD had no discernable effect on pulsatile estimates of StO2 at either the ventilatory or cardiac frequencies. StO2 estimated at the NIRS spectral peak from 0.75 to 1.75 Hz was 24 % higher than non-pulsatile StO2 (p = 0.0013). There were no other significant differences between pulsatile and non-pulsatile algorithms in the estimation of StO2. In 64 % of cases, both the low (ventilator) and high (cardiac) frequency estimates of StO2 were either both larger or both smaller than non-pulsatile StO2, suggesting that they were interrogating the same vascular bed. Frequency domain analysis cannot reliably separate NIRS waveforms into arterial and venous components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferrari M, Quaresima V. Near infrared brain and muscle oximetry: from the discovery to current applications. J Near Infrared Spectrosc. 2012;20:1–14.

    Article  CAS  Google Scholar 

  2. Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012;115(6):1373–83.

    Article  CAS  PubMed  Google Scholar 

  3. Benni PB, Chen B, Dykes FD, et al. Validation of the CAS neonatal NIRS system by monitoring vv-ECMO patients: preliminary results. Adv Exp Med Biol. 2005;566:195–201.

    Article  PubMed  Google Scholar 

  4. Ito H, Ibaraki M, Kanno I, Fukuda H, Miura S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab. 2005;25(7):852–7.

    Article  PubMed  Google Scholar 

  5. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  CAS  PubMed  Google Scholar 

  6. Pearse RM, Hinds CJ. Should we use central venous saturation to guide management in high-risk surgical patients? Crit Care. 2006;10(6):181.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reinhart K, Bloos F. The value of venous oximetry. Curr Opin Crit Care. 2005;11(3):259–63.

    Article  PubMed  Google Scholar 

  8. Crabtree V, Echiadis A, Smith P, et al. Prospective venox feasibility study. Conf Proc IEEE Eng Med Biol Soc. 2005;2:1968–71.

    PubMed  Google Scholar 

  9. Echiadis AS, Crabtree VP, Bence J, et al. Non-invasive measurement of peripheral venous oxygen saturation using a new venous oximetry method: evaluation during bypass in heart surgery. Physiol Meas. 2007;28(8):897–911.

    Article  CAS  PubMed  Google Scholar 

  10. Walton ZD, Kyriacou PA, Silverman DG, Shelley KH. Measuring venous oxygenation using the photoplethysmograph waveform. J Clin Monit Comput. 2010;24(4):295–303.

    Article  PubMed  Google Scholar 

  11. Thiele RH, Tucker-Schwartz JM, Lu Y, Gillies GT, Durieux ME. Technical communication: transcutaneous regional venous oximetry: a feasibility study. Anesth Analg. 2011;112(6):1353–7.

    Article  PubMed  Google Scholar 

  12. Franceschini MA, Boas DA, Zourabian A, et al. Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects. J Appl Physiol. 2002;92(1):372–84.

    PubMed  PubMed Central  Google Scholar 

  13. Alian AA, Shelley KH. Respiratory physiology and the impact of different modes of ventilation on the photoplethysmographic waveform. Sensors (Basel). 2012;12(2):2236–54.

    Article  Google Scholar 

  14. Huffmyer JL, Groves DS, Scalzo DC, et al. The effect of the intrathoracic pressure regulator on hemodynamics and cardiac output. Shock. 2011;35(2):114–6.

    Article  PubMed  Google Scholar 

  15. Thiele RH, Colquhoun DA, Tucker-Schwartz JM, Gillies GT, Durieux ME. Radial-femoral concordance in time and frequency domain-based estimates of systemic arterial respiratory variation. J Clin Monit Comput. 2012;26(5):393–400.

    Article  PubMed  Google Scholar 

  16. Matcher J, Kirkpatrick P, Nahid K, Cope M, Delpy DT. Absolute quantification methods in tissue near infrared spectroscopy. Proc SPIE. 1995;1995(486):486–95.

    Article  Google Scholar 

  17. Delpy DT, Cope M. Quantification in tissue near-infrared spectroscopy. Philos Trans R Soc B: Biol Sci. 1997;352:649–59.

    Article  CAS  Google Scholar 

  18. Suzuki S, Takasaki S, Ozaki T, Kobayashi Y. A tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE. 1999;1999(3597):582–92.

    Article  Google Scholar 

  19. Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EO. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta. 1988;933(1):184–92.

    Article  CAS  PubMed  Google Scholar 

  20. Ryan KL, Cooke WH, Rickards CA, Lurie KG, Convertino VA. Breathing through an inspiratory threshold device improves stroke volume during central hypovolemia in humans. J Appl Physiol. 2008;104(5):1402–9.

    Article  PubMed  Google Scholar 

  21. Marino BS, Yannopoulos D, Sigurdsson G, et al. Spontaneous breathing through an inspiratory impedance threshold device augments cardiac index and stroke volume index in a pediatric porcine model of hemorrhagic hypovolemia. Crit Care Med. 2004;32(9 Suppl):S398–405.

    Article  PubMed  Google Scholar 

  22. Convertino VA, Ratliff DA, Ryan KL, et al. Hemodynamics associated with breathing through an inspiratory impedance threshold device in human volunteers. Crit Care Med. 2004;32(9 Suppl):S381–6.

    Article  PubMed  Google Scholar 

  23. Yannopoulos D, McKnite SH, Metzger A, Lurie KG. Intrathoracic pressure regulation for intracranial pressure management in normovolemic and hypovolemic pigs. Crit Care Med. 2006;34(12 Suppl):S495–500.

    Article  PubMed  Google Scholar 

  24. Rickards CA, Ryan KL, Cooke WH, Lurie KG, Convertino VA. Inspiratory resistance delays the reporting of symptoms with central hypovolemia: association with cerebral blood flow. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R243–50.

    Article  CAS  PubMed  Google Scholar 

  25. Colquhoun DA, Tucker-Schwartz JM, Durieux ME, Thiele RH. Non-invasive estimation of jugular venous oxygen saturation: a comparison between near infrared spectroscopy and transcutaneous venous oximetry. J Clin Monit Comput. 2012;26(2):91–8.

    Article  PubMed  Google Scholar 

  26. Lynch JM, Buckley EM, Schwab PJ, et al. Noninvasive optical quantification of cerebral venous oxygen saturation in humans. Acad Radiol. 2014;21(2):162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. O’Rourke MF, Taylor MG. Vascular impedance of the femoral bed. Circ Res. 1966;18:126–39.

    Article  Google Scholar 

  28. Ma HY, Xu Q, Ballesteros JR, Ntziachristos V, Zhang Q, Chance B. Quantitative study of hypoxia stress in piglet brain by IQ phase modulation oximetry. Proc SPIE. 1999;3597:642–9.

    Article  CAS  Google Scholar 

  29. Hueber DM, Franceschini MA, Ma HY, et al. Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument. Phys Med Biol. 2001;46(1):41–62.

    Article  CAS  PubMed  Google Scholar 

  30. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.

    Article  PubMed  Google Scholar 

  31. Cannesson M, Le Manach Y, Hofer CK, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115(2):231–41.

    Article  PubMed  Google Scholar 

  32. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.

    Article  PubMed  Google Scholar 

  33. Wardhan R, Shelley K. Peripheral venous pressure waveform. Curr Opin Anaesthesiol. 2009;22(6):814–21.

    Article  PubMed  Google Scholar 

  34. Cannesson M, Awad AA, Shelley K. Oscillations in the plethysmographic waveform amplitude: phenomenon hides behind artifacts. Anesthesiology. 2009;111(1):206–7 (author reply 207–208).

    Article  PubMed  Google Scholar 

  35. Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012;116(4):834–40.

    Article  CAS  PubMed  Google Scholar 

  36. Broch O, Bein B, Gruenewald M, et al. Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiol Scand. 2011;55(6):686–93.

    Article  CAS  PubMed  Google Scholar 

  37. Johnston WE, DeWitt DS, Vinten-Johansen J, Stump DA, Prough DS. Phenylephrine does not reduce cerebral perfusion during canine cardiopulmonary bypass. Anesth Analg. 1994;79(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  38. Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT. Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem. 1995;227(1):54–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Colquhoun.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colquhoun, D.A., Naden, K. & Thiele, R.H. Frequency domain analysis of cerebral near infrared spectroscopy signals during application of an impedance threshold device in spontaneously ventilating volunteers. J Clin Monit Comput 30, 389–398 (2016). https://doi.org/10.1007/s10877-015-9729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9729-0

Keywords

Navigation