Skip to main content
Log in

Continuous cardiac output measurement by un-calibrated pulse wave analysis and pulmonary artery catheter in patients with septic shock

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Septic shock is a serious medical condition. With increased concerns about invasive techniques, a number of non-invasive and semi-invasive devices measuring cardiac output (CO) have become commercially available. The aim of the present study was to determine the accuracy, precision and trending abilities of the FloTrac and the continuous pulmonary artery catheter thermodilution technique determining CO in septic shock patients. Consecutive septic shock patients were included in two centres and CO was measured every 4 h up to 48 h by FloTrac (APCO) and by pulmonary artery catheter (PAC) using the continuous (CCO) and intermittent (ICO) technique. Forty-seven septic shock patients with 326 matched sets of APCO, CCO and ICO data were available for analysis. Bland and Altman analysis revealed a mean bias ±2 SD of 0.0 ± 2.14 L min−1 for APCO–ICO (%error = 34.5 %) and 0.23 ± 2.55 L min−1 for CCO–ICO (%error = 40.4 %). Trend analysis showed a concordance of 85 and 81 % for APCO and CCO, respectively. In contrast to CCO, APCO was influenced by systemic vascular resistance and by mean arterial pressure. In septic shock patients, APCO measurements assessed by FloTrac but also the established CCO measurements using the PAC did not meet the currently accepted statistical criteria indicating acceptable clinical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.

    Article  CAS  PubMed  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative G. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  3. ProCESS I, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.

    Article  Google Scholar 

  4. ARISE I, Group ACT, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371:1496–506.

  5. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R, Surviving Sepsis Campaign Guidelines Committee including the Pediatric S. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.

    Article  PubMed  Google Scholar 

  6. Cecconi M, Arulkumaran N, Kilic J, Ebm C, Rhodes A. Update on hemodynamic monitoring and management in septic patients. Minerva Anestesiol. 2014;80:701–11.

    CAS  PubMed  Google Scholar 

  7. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Linton NW, Linton RA. Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth. 2001;86:486–96.

    Article  CAS  PubMed  Google Scholar 

  9. Alhashemi JA, Cecconi M, della Rocca G, Cannesson M, Hofer CK. Minimally invasive monitoring of cardiac output in the cardiac surgery intensive care unit. Curr Heart Fail Rep. 2010;7:116–24.

    Article  PubMed  Google Scholar 

  10. Biancofiore G, Critchley LA, Lee A, Bindi L, Bisa M, Esposito M, Meacci L, Mozzo R, DeSimone P, Urbani L, Filipponi F. Evaluation of an uncalibrated arterial pulse contour cardiac output monitoring system in cirrhotic patients undergoing liver surgery. Br J Anaesth. 2009;102:47–54.

    Article  CAS  PubMed  Google Scholar 

  11. Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul JL. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care. 2010;14:R109.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Meng L, Tran NP, Alexander BS, Laning K, Chen G, Kain ZN, Cannesson M. The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal doppler cardiac output measurements. Anesth Analg. 2011;113:751–7.

    Article  CAS  PubMed  Google Scholar 

  13. Slagt C, Malagon I, Groeneveld AB. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth. 2014;112:626–37.

    Article  CAS  PubMed  Google Scholar 

  14. De Backer D, Marx G, Tan A, Junker C, Van Nuffelen M, Huter L, Ching W, Michard F, Vincent JL. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med. 2011;37:233–40.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Marque S, Gros A, Chimot L, Gacouin A, Lavoue S, Camus C, Le Tulzo Y. Cardiac output monitoring in septic shock: evaluation of the third-generation Flotrac-Vigileo. J Clin Monit Comput. 2013;27:273–9.

    Article  PubMed  Google Scholar 

  16. Slagt C, de Leeuw MA, Beute J, Rijnsburger E, Hoeksema M, Mulder JW, Malagon I, Groeneveld AB. Cardiac output measured by uncalibrated arterial pressure waveform analysis by recently released software version 3.02 versus thermodilution in septic shock. J Clin Monit Comput. 2013;27:171–7.

    Article  PubMed  Google Scholar 

  17. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, Sccm/Esicm/Accp/Ats/Sis. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.

    Article  PubMed  Google Scholar 

  18. Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126:1001–4.

    CAS  PubMed  Google Scholar 

  19. Pratt B, Roteliuk L, Hatib F, Frazier J, Wallen RD. Calculating arterial pressure-based cardiac output using a novel measurement and analysis method. Biomed Instrum Technol. 2007;41:403–11.

    Article  PubMed  Google Scholar 

  20. Krouwer JS. Estimating total analytical error and its sources. Techniques to improve method evaluation. Arch Pathol Lab Med. 1992;116:726–31.

    CAS  PubMed  Google Scholar 

  21. CLSI (2003) Clinical and Laboratory Standards Institute: estimation of total analytical error for clinical laboratory methods. CLSI EP21-A.

  22. Bland JM, Altman DG. Agreed statistics: measurement method comparison. Anesthesiology. 2012;116:182–5.

    Article  PubMed  Google Scholar 

  23. Myles PS, Cui J. Using the Bland–Altman method to measure agreement with repeated measures. Br J Anaesth. 2007;99:309–11.

    Article  CAS  PubMed  Google Scholar 

  24. R-Project (2014) R software environment for statistical computing and graphics. http://www.r-project.org/. Accessed 10 Oct 2014.

  25. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91.

    Article  CAS  PubMed  Google Scholar 

  26. Critchley LA, Lee A, Ho AM. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg. 2010;111:1180–92.

    Article  PubMed  Google Scholar 

  27. Critchley LA, Yang XX, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25:536–46.

    Article  PubMed  Google Scholar 

  28. Desebbe O, Henaine R, Keller G, Koffel C, Garcia H, Rosamel P, Obadia JF, Bastien O, Lehot JJ, Haftek M, Critchley LA. Ability of the third-generation FloTrac/Vigileo software to track changes in cardiac output in cardiac surgery patients: a polar plot approach. J Cardiothorac Vasc Anesth. 2013;27:1122–7.

    Article  PubMed  Google Scholar 

  29. Alhashemi JA, Cecconi M, Hofer CK. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15:214.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Koo KK, Sun JC, Zhou Q, Guyatt G, Cook DJ, Walter SD, Meade MO. Pulmonary artery catheters: evolving rates and reasons for use. Crit Care Med. 2011;39:1613–8.

    Article  PubMed  Google Scholar 

  31. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K (2013) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2:CD003408.

  32. Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.

    Article  PubMed  Google Scholar 

  33. Yang XX, Critchley LA, Joynt GM. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig. Anesth Analg. 2011;112:70–7.

    Article  PubMed  Google Scholar 

  34. Hatib F. Jansen JR, Pinsky MR (2011) Peripheral vascular decoupling in porcine endotoxic shock. J Appl Physiol. 1985;111:853–60.

    Article  Google Scholar 

  35. Aranda M, Mihm FG, Garrett S, Mihm MN, Pearl RG. Continuous cardiac output catheters: delay in in vitro response time after controlled flow changes. Anesthesiology. 1998;89:1592–5.

    Article  CAS  PubMed  Google Scholar 

  36. Haller M, Zollner C, Briegel J, Forst H. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23:860–6.

    Article  CAS  PubMed  Google Scholar 

  37. Hofer CK, Cecconi M, Marx G, della Rocca G. Minimally invasive haemodynamic monitoring. Eur J Anaesthesiol. 2009;26:996–1002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of Edwards Lifesciences, Irvine, CA, USA.

Conflict of interest

In the past, CKH received lecturing fees and research grants from Edwards Lifesciences, Irvine, CA, USA. CKH has no other financial relationship with Edwards Lifesciences. MTG, JAA, AMA, UMS, PS, SAS, AMB and SH have no conflict of interests to declare and have no financial relationship with Edwards Lifesciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph K. Hofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganter, M.T., Alhashemi, J.A., Al-Shabasy, A.M. et al. Continuous cardiac output measurement by un-calibrated pulse wave analysis and pulmonary artery catheter in patients with septic shock. J Clin Monit Comput 30, 13–22 (2016). https://doi.org/10.1007/s10877-015-9672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9672-0

Keywords

Navigation