Skip to main content

Advertisement

Log in

Multi-scale sample entropy of electroencephalography during sevoflurane anesthesia

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The electroencephalogram (EEG) has been widely applied in the assessment of depth of anesthesia (DoA). Recent research has found that multi-scale EEG analysis describes brain dynamics better than traditional non-linear methods. In this study, we have adopted a modified sample entropy (MSpEn) method to analyze anesthetic EEG series as a measure of DoA. EEG data from a previous study consisting of 19 adult subjects undergoing sevoflurane anesthesia were used in the present investigation. In addition to the modified sample entropy method, the well-established EEG indices approximate entropy (ApEn), response entropy (RE), and state entropy (SE) were also computed for comparison. Pharmacokinetic/pharmacodynamic modeling and prediction probability (P k ) were used to assess and compare the performance of the four methods for tracking anesthetic concentration. The influence of the number of scales on MSpEn was also investigated using a linear regression model. MSpEn correlated closely with anesthetic effect. The P k (0.83 ± 0.05, mean ± SD) and the coefficient of determination R 2 (0.87 ± 0.21) for the relationship between MSpEn and sevoflurane effect site concentration were highest for MSpEn (P k : RE = 0.73 ± 0.08, SE = 0.72 ± 0.07, ApEn = 0.81 ± 0.04; R 2: RE = 0.75 ± 0.08, SE = 0.64 ± 0.09, ApEn = 0.81 ± 0.10). Scales 1, 3 and 5 tended to make the greatest contribution to MSpEn. For this data set, the MSpEn is superior to the ApEn, the RE and the SE for tracking drug concentration change during sevoflurane anesthesia. It is suggested that the MSpEn may be further studied for application in clinical monitoring of DoA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Johansen JW, Sebel PS, Sigl JC. Clinical impact of hypnotic-titration guidelines based on EEG bispectral index (BIS) monitoring during routine anesthetic care. J Clin Anesth. 2000;12(6):433–43.

    Article  CAS  PubMed  Google Scholar 

  2. Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97(1):85–94. doi:10.1093/bja/ael120.

    Article  CAS  PubMed  Google Scholar 

  3. Jameson L, Sloan T. Using EEG to monitor anesthesia drug effects during surgery. J Clin Monit Comput. 2006;20(6):445–72.

    Article  PubMed  Google Scholar 

  4. Zikov T, Bibian S, Dumont GA, Huzmezan M, Ries CR. Quantifying cortical activity during general anesthesia using wavelet analysis. IEEE T Bio Med Eng. 2006;53(4):617–32. doi:10.1109/Tbme.870255.

    Article  Google Scholar 

  5. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89(4):980–1002.

    Article  CAS  PubMed  Google Scholar 

  6. Bruhn J, Ropcke H, Rehberg B, Bouillon T, Hoeft A. Electroencephalogram approximate entropy correctly classifies the occurrence of burst suppression pattern as increasing anesthetic drug effect. Anesthesiology. 2000;93(4):981–5. doi:10.1097/00000542-200010000-00018.

    Article  CAS  PubMed  Google Scholar 

  7. Sörnmo L, Laguna P. Bioelectrical signal processing in cardiac and neurological applications. Boston: Elsevier; 2005.

    Google Scholar 

  8. Maksimow A, Snapir A, Sarkela M, Kentala E, Koskenvuo J, Posti J, Jaaskelainen SK, Hinkka-Yli-Salomaki S, Scheinin M, Scheinin H. Assessing the depth of dexmedetomidine-induced sedation with electroencephalogram (EEG)-based spectral entropy. Acta Anaesthesiol Scand. 2007;51(1):22–30. doi:10.1111/j.1399-6576.2006.01174.x.

    Article  CAS  PubMed  Google Scholar 

  9. Cao YH, Tung WW, Gao JB, Protopopescu VA, Hively LM. Detecting dynamical changes in time series using the permutation entropy. Phys Rev E. 2004;70(4):46217. doi:10.1103/Physreve.70.046217.

    Article  Google Scholar 

  10. Li X, Polygiannakis J, Kapiris P, Peratzakis A, Eftaxias K, Yao X. Fractal spectral analysis of pre-epileptic seizures in terms of criticality. J Neural Eng. 2005;2(2):11–6. doi:10.1088/1741-2560/2/2/002.

    Article  PubMed  Google Scholar 

  11. Jospin M, Caminal P, Jensen EW, Lifvan H, Vallverdu M, Strays MMRF, Vereecke HEM, Kaplan DT. Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE T BioMed Eng. 2007;54(5):840–6. doi:10.1109/Tbme.893453.

    Article  Google Scholar 

  12. Nguyen-Ky T, Wen P, Li Y. An improved detrended moving-average method for monitoring the depth of anesthesia. IEEE T BioMed Eng. 2010;57(10):2369–78. doi:10.1109/TBME.2010.2053929.

    Article  CAS  Google Scholar 

  13. Vakorin VA, Ross B, Krakovska O, Bardouille T, Cheyne D, McIntosh AR. Complexity analysis of source activity underlying the neuromagnetic somatosensory steady-state response. NeuroImage. 2010;51(1):83–90. doi:10.1016/j.neuroimage.2010.01.100.

    Article  PubMed  Google Scholar 

  14. Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011;9(1):18. doi:10.1186/1741-7015-9-18.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wv Drongelen. Signal processing for neuroscientists: introduction to the analysis of physiological signals. Burlington, MA: Academic Press; 2007.

    Google Scholar 

  16. Toriyama W, Adachi Y, Obata Y, Sato S, Matsuda N. Sudden increases and decreases in bispectral index values more than 30 within 1 minute during general anesthesia. Masui. 2012;61(2):210–3.

    PubMed  Google Scholar 

  17. Schneider G, Gelb AW, Schmeller B, Tschakert R, Kochs E. Detection of awareness in surgical patients with EEG-based indices–bispectral index and patient state index. Br J Anaesth. 2003;91(3):329–35. doi:10.1093/Bja/Aeg188.

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Li D, Liang Z, Voss LJ, Sleigh JW. Analysis of depth of anesthesia with Hilbert–Huang spectral entropy. Clin Neurophysiol. 2008;119(11):2465–75. doi:10.1016/j.clinph.2008.08.006.

    Article  PubMed  Google Scholar 

  19. Kapiris PG, Polygiannakis J, Li X, Yao X, Eftaxias KA. Similarities in precursory features in seismic shocks and epileptic seizures. Europhys Lett. 2005;69(4):657–63. doi:10.1209/epl/i2004-10383-2.

    Article  CAS  Google Scholar 

  20. Podobnik B, Stanley HE. Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys Rev Lett. 2008;100(8):084102.

    Article  PubMed  Google Scholar 

  21. Li D, Li X, Liang Z, Voss LJ, Sleigh JW. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng. 2010;7(4):046010. doi:10.1088/1741-2560/7/4/046010.

    Article  PubMed  Google Scholar 

  22. Olofsen E, Sleigh JW, Dahan A. Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth. 2008;101(6):810–21. doi:10.1093/bja/aen290.

    Article  CAS  PubMed  Google Scholar 

  23. Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi K, Wada Y. Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin Neurophysiol. 2010;121(9):1438–46. doi:10.1016/j.clinph.2010.03.025.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.

    Article  PubMed  Google Scholar 

  25. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(2 Pt 1):021906. doi:10.1103/Physreve.71.021906.

    Article  PubMed  Google Scholar 

  26. Escudero J, Abasolo D, Hornero R, Espino P, Lopez M. Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol Meas. 2006;27(11):1091–106. doi:10.1088/0967-3334/27/11/004.

    Article  CAS  PubMed  Google Scholar 

  27. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88(6):2297–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Takahashi T, Cho RY, Murata T, Mizuno T, Kikuchi M, Mizukami K, Kosaka H, Takahashi K, Wada Y. Age-related variation in EEG complexity to photic stimulation: a multiscale entropy analysis. Clin Neurophysiol. 2009;120(3):476–83. doi:10.1016/j.clinph.2008.12.043.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Takahashi T, Cho RY, Mizuno T, Kikuchi M, Murata T, Takahashi K, Wada Y. Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. NeuroImage. 2010;51(1):173–82. doi:10.1016/j.neuroimage.2010.02.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. McKay ID, Voss LJ, Sleigh JW, Barnard JP, Johannsen EK. Pharmacokinetic-pharmacodynamic modeling the hypnotic effect of sevoflurane using the spectral entropy of the electroencephalogram. Anesth Analg. 2006;102(1):91–7. doi:10.1213/01.ane.0000184825.65124.24.

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Cui S, Voss LJ. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology. 2008;109(3):448–56. doi:10.1097/ALN.0b013e318182a91b.

    Article  CAS  PubMed  Google Scholar 

  32. Krishnaveni V, Jayaraman S, Anitha L, Ramadoss K. Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J Neural Eng. 2006;3(4):338–46. doi:10.1088/1741-2560/3/4/011.

    Article  CAS  PubMed  Google Scholar 

  33. Mitra S, Kuo Y. Digital signal processing: a computer-based approach, vol. 128. New York: McGraw-Hill New York; 1998.

    Google Scholar 

  34. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. doi:10.1016/j.jneumeth.2003.10.009.

    Article  PubMed  Google Scholar 

  35. Xie HB, He WX, Liu H. Measuring time series regularity using nonlinear similarity-based sample entropy. Phys Lett A. 2008;372(48):7140–6. doi:10.1016/j.physleta.2008.10.049.

    Article  CAS  Google Scholar 

  36. Smith WD, Dutton RC, Smith NT. Measuring the performance of anesthetic depth indicators. Anesthesiology. 1996;84(1):38–51.

    Article  CAS  PubMed  Google Scholar 

  37. Ellerkmann RK, Liermann VM, Alves TM, Wenningmann I, Kreuer S, Wilhelm W, Roepcke H, Hoeft A, Bruhn J. Spectral entropy and bispectral index as measures of the electroencephalographic effects of sevoflurane. Anesthesiology. 2004;101(6):1275–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (61025019, 61273063, 81230023, 61304247). Many thanks reviewers for helpful comments to improve this manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Liang, Z., Voss, L.J. et al. Multi-scale sample entropy of electroencephalography during sevoflurane anesthesia. J Clin Monit Comput 28, 409–417 (2014). https://doi.org/10.1007/s10877-014-9550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-014-9550-1

Keywords

Navigation