Skip to main content

Advertisement

Log in

Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies

  • Review Paper
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Normal mitochondrial function in the process of metabolic energy production is a key factor in maintaining cellular activities. Many pathological conditions in animals, as well as in patients, are directly or indirectly related to dysfunction of the mitochondria. Monitoring the mitochondrial activity by measuring the autofluorescence of NADH has been the most practical approach since the 1950s. This review presents the principles and technological aspects, as well as typical results, accumulated in our laboratory since the early 1970s. We were able to apply the fiber-optic-based NADH fluorometry to many organs monitored in vivo under various pathophysiological conditions in animals. These studies were the basis for the development of clinical monitoring devices as presented in accompanying article. The encouraging experimental results in animals stimulated us to apply the same technology in patients after technological adaptations as described in the accompanying article. Our medical device was approved for clinical use by the FDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91:227s–55s.

    Article  PubMed  CAS  Google Scholar 

  2. Monsalve M, Borniquel S, Valle I, Lamas S. Mitochondrial dysfunction in human pathologies. Front Biosci. 2007;12:1131–53.

    Article  PubMed  CAS  Google Scholar 

  3. Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience. 2007;145:1233–48.

    Article  PubMed  CAS  Google Scholar 

  4. Tatton WG, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta. 1999;1410:195–213.

    Article  PubMed  CAS  Google Scholar 

  5. Kermer P, Liman J, Weishaupt JH, Bahr M. Neuronal apoptosis in neurodegenerative diseases: from basic research to clinical application. Neurodegener Dis. 2004;1:9–19.

    Article  PubMed  Google Scholar 

  6. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

    Article  PubMed  CAS  Google Scholar 

  7. Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–86.

    Article  PubMed  CAS  Google Scholar 

  8. Linford NJ, Schriner SE, Rabinovitch PS. Oxidative damage and aging: spotlight on mitochondria. Cancer Res. 2006;66:2497–9.

    Article  PubMed  CAS  Google Scholar 

  9. Signoretti S, Marmarou A, Aygok GA, Fatouros PP, Portella G, Bullock RM. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg. 2008;108:42–52.

    Article  PubMed  CAS  Google Scholar 

  10. Robertson CL, Soane L, Siegel ZT, Fiskum G. The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci. 2006;28:432–46.

    Article  PubMed  CAS  Google Scholar 

  11. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma. 2007;24:991–9.

    Article  PubMed  Google Scholar 

  12. Sims NR, Anderson MF. Mitochondrial contributions to tissue damage in stroke. Neurochem Int. 2002;40:511–26.

    Article  PubMed  CAS  Google Scholar 

  13. Ballinger SW. Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med. 2005;38:1278–95.

    Article  PubMed  CAS  Google Scholar 

  14. Porta F, Takala J, Weikert C, et al. Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care. 2006;10:R118.

    Article  PubMed  Google Scholar 

  15. Rotig A. Renal disease and mitochondrial genetics. J Nephrol. 2003;16:286–92.

    PubMed  CAS  Google Scholar 

  16. Fink MP. Bench-to-bedside review: cytopathic hypoxia. Crit Care. 2002;6:491–9.

    Article  PubMed  Google Scholar 

  17. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004;4:729–41.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe S, Yaginuma R, Ikejima K, Miyazaki A. Liver diseases and metabolic syndrome. J Gastroenterol. 2008;43:509–18.

    Article  PubMed  CAS  Google Scholar 

  19. Abdul-Ghani MA, DeFronzo RA. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr Diab Rep. 2008;8:173–8.

    Article  PubMed  CAS  Google Scholar 

  20. Wei Y, Rector RS, Thyfault JP, Ibdah JA. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol. 2008;14:193–9.

    Article  PubMed  CAS  Google Scholar 

  21. Cunha-Oliveira T, Rego AC, Oliveira CR. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev. 2008;58:192–208.

    Article  PubMed  CAS  Google Scholar 

  22. Boess F, Ndikum-Moffor FM, Boelsterli UA, Roberts SM. Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol. 2000;60:615–23.

    Article  PubMed  CAS  Google Scholar 

  23. Warburg O. The metabolism of tumours. London: Constable & CO LTD; 1930.

    Google Scholar 

  24. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.

    PubMed  CAS  Google Scholar 

  25. Weinhouse S. On respiratory impairment in cancer cells. Science. 1956;124:267–8.

    Article  PubMed  CAS  Google Scholar 

  26. Modica-Napolitano JS, Kulawiec M, Singh KK. Mitochondria and human cancer. Curr Mol Med. 2007;7:121–31.

    Article  PubMed  CAS  Google Scholar 

  27. Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006;25:4647–62.

    Article  PubMed  CAS  Google Scholar 

  28. Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006;25:4663–74.

    Article  PubMed  CAS  Google Scholar 

  29. Mayevsky A, Chance B. A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. In: Anonymous international symposium on oxygen transport to tissue. Adv Exp Med Biol. 37A edn. New York: Plenum Press; 1973. p. 239–44.

  30. Chance B, Oshino N, Sugano T, Mayevsky A. Basic principles of tissue oxygen determination from mitochondrial signals. In: International symposium on oxygen transport to tissue. Anonymous Adv Exp Med Biol. New York: Plenum Pub. Corp.; 1973. p. 239–44.

  31. Chance B, Williams GR. A method for the localization of sites for oxidative phosphorylation. Nature. 1955;176:250–4.

    Article  PubMed  CAS  Google Scholar 

  32. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955;217:409–27.

    PubMed  CAS  Google Scholar 

  33. Mayevsky A, Rogatsky GG. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol. 2007;292:C615–40.

    Article  PubMed  CAS  Google Scholar 

  34. Chance B, Thorell B. Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem. 1959;234:3044–50.

    PubMed  CAS  Google Scholar 

  35. Mayevsky A. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res Rev. 1984;7:49–68.

    Article  CAS  Google Scholar 

  36. Mayevsky A, Chance B. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science. 1982;217:537–40.

    Article  PubMed  CAS  Google Scholar 

  37. Pittman RN. Oxygen gradients in the microcirculation. Acta Physiol (Oxf). 2011;202:311–22.

    Article  CAS  Google Scholar 

  38. Schober P, Schwarte LA. From system to organ to cell: oxygenation and perfusion measurement in anesthesia and critical care. J Clin Monit Comput. 2012;26:255–65.

    Article  PubMed  Google Scholar 

  39. Harms FA, Bodmer SI, Raat NJ, Stolker RJ, Mik EG. Validation of the protoporphyrin IX-triplet state lifetime technique for mitochondrial oxygen measurements in the skin. Opt Lett. 2012;37:2625–7.

    Article  PubMed  CAS  Google Scholar 

  40. Springett R, Swartz HM. Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues. Antioxid Redox Signal. 2007;9:1295–301.

    Article  PubMed  CAS  Google Scholar 

  41. Wilson DF. Quantifying the role of oxygen pressure in tissue function. Am J Physiol Heart Circ Physiol. 2008;294:H11–3.

    Article  PubMed  CAS  Google Scholar 

  42. Chance B, Oshino N, Sugano T, Mayevsky A. Basic principles of tissue oxygen determination from mitochondrial signals. In: Bicher HI, Bruley DF, editors. Oxygen transport to tissue. Instrumentation, methods, and physiology. New York: Plenum Publishing Corporation; 1973. p. 277–92.

    Google Scholar 

  43. Lubbers DW. Optical sensors for clinical monitoring. Acta Anaesth Scand Suppl. 1995;39:37–54.

    Article  Google Scholar 

  44. Rampil IJ, Litt L, Mayevsky A. Correlated, simultaneous, multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH and brain microvessel hemoglobin oxygen saturation. J Clin Monit. 1992;8:216–25.

    Article  PubMed  CAS  Google Scholar 

  45. Frank KH, Kessler M, Appelbaum K, Dummler W. The Erlangen micro-lightguide spectrophotometer EMPHO I. Phys Med Biol. 1989;34:1883–900.

    Article  PubMed  CAS  Google Scholar 

  46. Stern MD, Lappe DL, Bowen PD, et al. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol. 1977;232:H441–8.

    PubMed  CAS  Google Scholar 

  47. Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W. Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab. 1989;9:589–96.

    Article  PubMed  CAS  Google Scholar 

  48. Haberl RL, Heizer ML, Ellis EF. Laser-Doppler assessment of brain microcirculation: effect of local alterations. Am J Physiol. 1989;256:H1255–60.

    PubMed  CAS  Google Scholar 

  49. Barbiro E, Zurovsky Y, Mayevsky A. Real time monitoring of rat liver energy state during ischemia. Microvasc Res. 1998;56:253–60.

    Article  PubMed  CAS  Google Scholar 

  50. Mayevsky A, Meilin S, Manor T, Zarchin N, Sonn J. Optical monitoring of NADH redox state and blood flow as indicators of brain energy balance. Adv Exp Med Biol. 1999;471:133–40.

    Article  PubMed  CAS  Google Scholar 

  51. Mayevsky A, Nakache R, Luger-Hamer M, Amran D, Sonn J. Assessment of transplanted kidney vitality by a multiparametric monitoring system. Transplant Proc. 2001;33:2933–4.

    Article  PubMed  CAS  Google Scholar 

  52. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955;217:383–93.

    PubMed  CAS  Google Scholar 

  53. Mayevsky A, Ornstein E, Meilin S, Razon N, Ouaknine GE. The evaluation of brain CBF and mitochondrial function by a fiber optic tissue spectroscope in neurosurgical patients. Acta Neurochir Suppl. 2002;81:367–71.

    PubMed  CAS  Google Scholar 

  54. Sonn J, Mayevsky A. Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat. Brain Res. 2000;882:212–6.

    Article  PubMed  CAS  Google Scholar 

  55. Mayevsky A, Doron A, Meilin S, Manor T, Ornstein E, Ouaknine GE. Brain viability and function analyzer: multiparametric real-time monitoring in neurosurgical patients. Acta Neurochir Suppl (Wien). 1999;75:63–6.

    Article  CAS  Google Scholar 

  56. Harden A, Young W. The alcoholic ferment of yeast-juice. Proc R Soc. 1906;77:105–20.

    Google Scholar 

  57. Chance B, Cohen P, Jobsis F, Schoener B. Intracellular oxidation-reduction states in vivo. Science. 1962;137:499–508.

    Article  PubMed  CAS  Google Scholar 

  58. Chance B, Legallias V, Schoener B. Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature. 1962;195:1073–5.

    Article  PubMed  CAS  Google Scholar 

  59. Chance B, Schoener B. Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electro-encephalogram of the rat in anoxia. Nature. 1962;195:956–8.

    Article  PubMed  CAS  Google Scholar 

  60. Mayevsky A, Manor T, Pewzner E, et al. Tissue spectroscope: a novel in vivo approach to real time monitoring of tissue vitality. J Biomed Opt. 2004;9:1028–45.

    Article  PubMed  CAS  Google Scholar 

  61. Mayevsky A. Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Res. 1976;113:327–38.

    Article  PubMed  CAS  Google Scholar 

  62. Mayevsky A, Chance B. Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion. 2007;7:330–9.

    Article  PubMed  CAS  Google Scholar 

  63. Mayevsky A. Mitochondrial function and energy metabolism in cancer cells: past overview and future perspectives. Mitochondrion. 2009;9:165–79.

    Article  PubMed  CAS  Google Scholar 

  64. Mayevsky A, Barbiro-Micahely E. Use of NADH fluorescence to determine mitochondrial function in vivo. Int J Biochem Cell Biol. 2009;41:1977–88.

    Article  PubMed  CAS  Google Scholar 

  65. Kraut A, Barbiro-Michaely E, Zurovsky Y, Mayevsky A. Multiorgan monitoring of hemodynamic and mitochondrial responses to anoxia and cardiac arrest in the rat. Adv Exp Med Biol. 2003;510:299–304.

    Article  PubMed  CAS  Google Scholar 

  66. Kraut A, Barbiro-Michaely E, Mayevsky A. Differential effects of norepinephrine on brain and other less vital organs detected by a multisite multiparametric monitoring system. Med Sci Monit. 2004;10:BR215–20.

    PubMed  CAS  Google Scholar 

  67. Tolmasov M, Barbiro-Micahely E, Mayevsky A. Simultaneously multiparametric spectroscopic monitoring of tissue viability in the brain and small intestine. SPIE Proc. 2007;6434:1N-1–9.

    Google Scholar 

  68. Barbiro-Michaely E, Tolmasov M, Rinkevich-Shop S, Sonn J, Mayevsky A. Can the brain sparing effect be detected in small animal model? Med Sci Monitor. 2007;13:BR211–9.

    Google Scholar 

  69. Mendelbaum MM, Barbiro-Micahely E, Tolmasov M, Mayevsky A. Effects of severe hemorrhage on in vivo brain and small intestine mitochondrial NADH and microcirculatory blood flow. J Innov Opt Health Sci. 2008;1:177–83.

    Article  Google Scholar 

  70. Tolmasov M, Barbiro-Micahely E, Mayevsky A. The involvement of nitric oxide in the hemodynamic and metabolic state of the brain and the small intestine. SPIE Proc. 2009;7169:O61–067.

    Google Scholar 

  71. Amran-Cohen D, Sonn J, Luger-Hamer M, Mayevsky A. The effect of ischemia and hypoxia on renal blood flow, energy metabolism and function in vivo. Adv Exp Med Biol. 2003;540:93–101.

    PubMed  CAS  Google Scholar 

  72. Luger-Hamer M, Barbiro-Michaely E, Sonn J, Mayevsky A. Renal viability evaluated by the multiprobe assembly: a unique tool for the assessment of renal ischemic injury. Nephron Clin Pract. 2008;111:c29–38.

    Article  PubMed  CAS  Google Scholar 

  73. Clavijo JA, Van Bastelaar J, Pinsky MR, Puyana JC, Mayevsky A. A minimally invasive real time monitoring of mitochondrial NADH and tissue blood flow in the urethral wall during hemorrhage and resuscitation. Med Sci Monitor. 2008;14(9):BR175–82.

    Google Scholar 

  74. Mayevsky A, Walden R, Heldenberg E, et al. Real time monitoring of mitochondrial function and blood flow in the urethral wall of critical care patients. J Biomed Opt. 2011;16(6):067004-1-21.

    Google Scholar 

  75. Mayevsky A, Preisman S, Willenz PE, et al. Evaluation of the CritiView in a pig model of abdominal aortic occlusion and graded hemorrhage. SPIE Proc. 2009;7173:OL1–10.

    Google Scholar 

  76. Kedem J, Mayevsky A, Sonn J, Acad BA. An experimental approach for evaluation of the O2 balance in local myocardial regions in vivo. Q J Exp Physiol. 1981;66:501–14.

    PubMed  CAS  Google Scholar 

  77. Sonn J, Acad B, Mayevsky A, Kedem J. Effect of coronary vasodilation produced by hypopnea upon regional myocardial oxygen balance. Arch Int Physiol Biochim. 1981;89:445–55.

    Article  PubMed  CAS  Google Scholar 

  78. Sonn J, Mayevsky A, Acad B, Guggenheimer E, Kedem J. Effect of local ischemia on the myocardial oxygen balance and its response to heart rate elevation. Q J Exp Physiol. 1982;67:335–48.

    PubMed  CAS  Google Scholar 

  79. Osbakken M, Mayevsky A. Multiparameter monitoring and analysis of in vivo ischemic and hypoxic heart. J Basic Clin Physiol Pharmacol. 1996;7:97–113.

    Article  PubMed  CAS  Google Scholar 

  80. Osbakken M, Mayevsky A, Ponomarenko I, Zhang D, Duska C, Chance B. Combined in vivo NADH fluorescence and 31P-NMR to evaluate myocardial oxidative phosphorylation. J Appl Cardiol. 1989;4:305–13.

    Google Scholar 

  81. Osbakken M, Doliba N, Mitchell MD, Ivanics T, Zhang D, Mayevsky A. Acetylcholine: is it a myocardial metabolic regulator? J Appl Cardiol. 1990;5:357–66.

    Google Scholar 

  82. Osbakken M, Mitchell M, Zhang D, Mayevsky A, Chance B. In vivo correlation of myocardial metabolism, perfusion and mechanical function during increased cardiac work. Cardiovasc Res. 1991;25:749–56.

    Article  PubMed  CAS  Google Scholar 

  83. Simonovich M, Barbiro-Micahely E, Mayevsky A. Real time monitoring of mitochondrial NADH and microcirculatory blood flow in the spinal cord. SPINE. 2008;33:2495–502.

    Article  PubMed  Google Scholar 

  84. Simonovich M, Barbiro-Michaely E, Salame K, Mayevsky A. A new approach to monitor spinal cord vitality in real time. Adv Exp Med Biol. 2003;540:125–32.

    PubMed  Google Scholar 

  85. Granot E, Sonn J, Etziony R, Mayevsky A. Effect of hypothermia on brain multiparametric activities in normoxic and partial ischemic rats. Comp Biochem Physiol Part A. 2002;132:239–46.

    Google Scholar 

  86. Barbiro-Michaely E, Mayevsky A. Multiparametric monitoring of brain functions under elevated intracranial pressure in a rat model. J Neurotrauma. 2001;18:711–25.

    Article  Google Scholar 

  87. Barbiro-Michaely E, Mayevsky A. Effects of elevated ICP on brain function: can the multiparametric monitoring system detect the ‘Cushing Response’? Neurol Res. 2003;25:42–52.

    Article  PubMed  Google Scholar 

  88. Rogatsky GG, Sonn J, Kamenir Y, Zarchin N, Mayevsky A. Relationship between intracranial pressure and cortical spreading depression following fluid percussion brain injury in rats. J Neurotrauma. 2003;20:1315–25.

    Article  PubMed  CAS  Google Scholar 

  89. Barbiro-Micahely E, Mayevsky A, Knoller N, Hadani M. In vivo multiparametric monitoring of brain functions under intracranial hypertension following mannitol administration. Neurol Res. 2005;27:88–93.

    Article  Google Scholar 

  90. Rogatsky GG, Kamenir Y, Mayevsky A. Effect of hyperbaric oxygenation effect on intracranial pressure elevation rate in rats during the early phase of severe traumatic brain injury. Brain Res. 2005;1047:131–6.

    Article  PubMed  CAS  Google Scholar 

  91. Barbiro-Micahely E, Bachbut G, Mayevsky A. Effects of compression injury on brain mitochondrial and tissue viability evaluated by a multiparametric monitoring system. SPIE Proc. 2008;6848:M1–8.

    Google Scholar 

  92. Manor T, Barbiro-Michaely E, Rogatsky G, Mayevsky A. Real-time multi-site multi-parametric monitoring of rat brain subjected to traumatic brain injury. Neurol Res. 2008;30:1075–83.

    Article  PubMed  Google Scholar 

  93. Barbiro-Micahely E, Arnon H, Mayevsky A. Evaluation of mitochondrial NADH and brain functions during retraction using a multiparametric monitoring system. SPIE Proc. 2009;7280:1I1–9.

    Google Scholar 

  94. Barbiro-Micahely E, Manor T, Rogatsky GG, Mayevsky A. How does anesthesia affect various levels of experimental traumatic brain injury? J Innovat Opt Health Sci. 2011;4(4):409–420.

    Google Scholar 

  95. Kanner AA, Rappaport ZH, Manor T, Mayevsky A. Multiparametric monitoring of rat brain retraction. Proc SPIE. 2002;4623:206–13.

    Article  Google Scholar 

  96. Mayevsky A. Ischemia in the brain: the effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Res. 1978;140:217–30.

    Article  PubMed  CAS  Google Scholar 

  97. Crowe W, Mayevsky A, Mela L. The dynamics of K+ leakage and recovery in cerebral ischemia. In: Leter A, Saba T, Mela L, editors. Advances in shock research. New York: Alan R. Liss; 1979. p. 221–32.

    Google Scholar 

  98. Mayevsky A, Ventura V, Zarchin N. Metabolic responses to hyperbaric oxygenation in the normoxic and ischemic brain. In: Bitterman N, Lincoln R, editors. Eilat, Israel: Israel Navy (GENERIC); 1989. p. 102–7.

  99. Mayevsky A, Breuer Z. The Mongolian gerbil as a model for cerebral ischemia. In: Schurr A, Rigor BM, editors. Cerebral ischemia and cerebral resuscitation. Boca Raton: CRC Press; 1990. p. 27–46.

    Google Scholar 

  100. Mayevsky A. Level of ischemia and brain functions in the Mongolian gerbil in vivo. Brain Res. 1990;524:1–9.

    Article  PubMed  CAS  Google Scholar 

  101. Mayevsky A, Yoles E, Zarchin N, Kaushansky D. Brain vascular ionic and metabolic responses to ischemia in the Mongolian gerbil. J Basic Clin Physiol Pharmacol. 1990;1:207–20.

    Article  PubMed  CAS  Google Scholar 

  102. Mayevsky A, Friedli CM, Reivich M. Metabolic, ionic and electrical responses of the gerbil brain to ischemia. Am J Physiol. 1985;248:R99–107.

    PubMed  CAS  Google Scholar 

  103. Mayevsky A, Kaplan H, Haveri J, Haselgrove J, Chance B. Three-dimensional metabolic mapping of the freeze-trapped brain: effects of ischemia on the Mongolian gerbil. Brain Res. 1986;367:63–72.

    Article  PubMed  CAS  Google Scholar 

  104. Mayevsky A, Zarchin N. Metabolic ionic and electrical activities during and after incomplete or complete cerebral ischemia in the Mongolian gerbil. In: Silver IA, Silver A, editors. Oxygen transport to tissue. IX: Plenum Press; 1987. p. 265–73.

    Google Scholar 

  105. Mayevsky A, Zarchin N. Microcirculatory and ionic events during and after incomplete or complete cerebral ischemia in the Mongolian gerbil. In: Tomita M, Sawada T, Naritomi H, Heiss WD, editors. Cerebral hyperemia and ischemia. Excerpta Medica; 1988. p. 157–69.

  106. Mayevsky A. Microcirculatory and ionic responses to ischemia in the Mongolian gerbil. In: Manabe H, Zweifach BW, Massmer K, editors. Microcirculation in circulatory disorders. Berlin: Springer; 1988. p. 273–6.

    Chapter  Google Scholar 

  107. Cohen S, Mayevsky A. Effects of nimodipine on the responses to cerebral ischemia in the Mongolian gerbil. Adv Exp Med Biol. 1989;248(429–38):429–38.

    Article  PubMed  CAS  Google Scholar 

  108. Mayevsky A, Sclarsky DS. Correlation of brain NADH redox state, K+, PO2 and electrical activity during hypoxia, ischemia and spreading depression. In: Anonymous oxygen transport to tissue, IV. New York: Plenum Press; 1983. p. 129–41.

  109. Mayevsky A, Zarchin N, Kaplan H, Haveri J, Haselgrove J, Chance B. Brain metabolic responses to ischemia in the Mongolian gerbil: in vivo and freeze trapped redox state scanning. Brain Res. 1983;276:95–107.

    Article  PubMed  CAS  Google Scholar 

  110. Meilin S, Zarchin N, Mayevsky A. Inter-relation between hemodynamic, metabolic, ionic and electrical activities during ischemia and reperfusion in the gerbil brain. Neurol Res. 1999;21:699–704.

    PubMed  CAS  Google Scholar 

  111. Breuer Z, Mayevsky A. Brain vasculature and mitochondrial responses to ischemia in gerbils: II. Strain differences and statistical evaluation. Brain Res. 1992;598:251–6.

    Article  PubMed  CAS  Google Scholar 

  112. Yoles E, Zurovsky Y, Zarchin N, Mayevsky A. Brain metabolic and ionic responses to global brain ischemia in the newborn dog in vivo. I. Methodological aspects. Neurol Res. 2000;22:505–11.

    PubMed  CAS  Google Scholar 

  113. Yoles E, Zarchin N, Zurovsky Y, Mayevsky A. Metabolic and ionic responses to global brain ischemia in the newborn dog in vivo: II. Post-natal age aspects. Neurol Res. 2000;22:623–9.

    PubMed  CAS  Google Scholar 

  114. Mayevsky A, Sonn J, Manor T, Razon N, Ouaknine GE. Responses to cortical spreading depression during normoxia and ischemia: multiparametric monitoring study in animals and the human brain. In: Ischemic blood flow in the brain. Keio Symposium (GENERIC); 2000. p. 343–50.

  115. Ligeti L, Mayevsky A, Ruttner Z, Kovach AG, McLaughlin AC. Can the Indo-1 fluorescence approach measure brain intracellular calcium in vivo? A multiparametric study of cerebrocortical anoxia and ischemia. Cell Calcium. 1997;21:115–24.

    Article  PubMed  CAS  Google Scholar 

  116. Krakovsky M, Rogatsky GG, Zarchin N, Mayevsky A. Effect of hyperbaric oxygen therapy on survival after global cerebral ischemia in rats. Surg Neurol. 1998;49:412–416.

    Google Scholar 

  117. Zarchin N, Guggenheimer-Furman E, Meilin S, Ornstein E, Mayevsky A. Thiopental induced cerebral protection during ischemia in gerbils. Brain Res. 1998;780:230–6.

    Article  PubMed  CAS  Google Scholar 

  118. Chance B, Mayevsky A, Guan B, Zhang Y. Hypoxia/ischemia triggers a light scattering event in rat brain. Adv Exp Med Biol. 1997;428(457–67):457–67.

    Article  PubMed  CAS  Google Scholar 

  119. Mayevsky A, Zarchin N, Sonn J. Brain redox state and O2 balance in experimental spreading depression and ischemia. In: Lehmenkuhler A, Grotemeyer K-H, Tegtmeier F, editors. Migraine—basic mechanisms and treatment. Munchen-Wier: Urban & Schwarzenberg; 1993. p. 379–93.

    Google Scholar 

  120. Rogatsky GG, Mayevsky A, Shifrin EG. Hyperbaric oxygenation as treatment of acute ischemic stroke: Future perspectives. In: Caplan LR, Shifrin E, Nicolaides AN, Moore W, editors. Cerebrovascular ischemia, investigation and management. Los Angeles: Med-Orion Publ. Com; 1996. p. 293–306.

    Google Scholar 

  121. Livnat A, Barbiro-Micahely E, Tolmasov M, Mayevsky A. Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats. J Innov Opt Health Sci. 2008;1:63–9.

    Article  Google Scholar 

  122. Mayevsky A, Sonn J, Barbiro-Micahely E. Mitochondrial function and physiological activities of the brain exposed to hypoxia and ischemia. In: Océane MR, editor. Brain hypoxia ischemia research progress. NY: Nova Science Publishers, Inc.; 2008. p. 83–111.

    Google Scholar 

  123. Zarchin N, Meilin A, Mendelman A, Mayevsky A. Age-related alteration of brain function during cerebral ischemia. Adv Exp Med Biol. 2003;540:109–15.

    PubMed  CAS  Google Scholar 

  124. Silberstein BR, Mayevsky A, Chance B. Metabolic responses of the gerbil brain cortex to anoxia, spreading depression, carotid occlusion and stroke. In: Dutton PL, Leigh J, Scarpa A, editors. Frontiers in bienergetics: from electrons to tissues. New York: Academic Press; 1978. p. 1477–85.

    Chapter  Google Scholar 

  125. Mayevsky A, Zarchin N. The effects of unilateral carotid occlusion on the responses to decapitation in the gerbil brain. Brain Res. 1981;206:155–60.

    Article  PubMed  CAS  Google Scholar 

  126. Mayevsky A, Duckrow RB, Yoles E, Zarchin N, Kanshansky D. Brain mitochondrial redox state, tissue hemodynamic and extracellular ion responses to four-vessel occlusion and spreading depression in the rat. Neurol Res. 1990;12:243–8.

    PubMed  CAS  Google Scholar 

  127. Livnat A, Barbiro-Micahely E, Mayevsky A. Mitochondrial function and cerebral blood flow responses under unilateral carotid occlusion in rats. SPIE Proc. 2009;7180:031–8.

    Google Scholar 

  128. Mayevsky A, Chance B. Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res. 1975;98:149–65.

    Article  PubMed  CAS  Google Scholar 

  129. Yoles E, Zarchin N, Mayevsky A. Effects of age on the metabolic ionic and electrical responses to anoxia in the newborn dog brain in vivo. J Basic Clin Physiol Pharmacol. 1991;2:297–313.

    Article  PubMed  CAS  Google Scholar 

  130. Mayevsky A, Nioka S, Subramanian VH, Chance B. Microcirculatory responses to brain hypoxia in the newborn dog as evaluated by P-NMR spectroscopy and NADH fluorometry/reflectometry in vivo. In: Tsuchiya M, Asano M, Mishima Y, Oda M, editors. Microcirculation—an upadate. Excerpta Medica; 1987. p. 49–50.

  131. Nioka S, Chance B, Smith DS, et al. Cerebral energy metabolism and oxygen state during hypoxia in neonate and adult dogs. Pediatr Res. 1990;28:54–62.

    Article  PubMed  CAS  Google Scholar 

  132. Yoles E, Zarchin N, Zurovsky Y, Guggenheimer-Furman E, Mayevsky A. Brain metabolic and ionic responses to systemic hypoxia in the newborn dog in vivo [in process citation]. Neurol Res. 1999;21:765–70.

    PubMed  CAS  Google Scholar 

  133. Mayevsky A, Ziv I. Oscillations of cortical oxidative metabolism and microcirculation in the ischemic brain. Neurol Res. 1991;13:39–47.

    PubMed  CAS  Google Scholar 

  134. Kanner AA, Rappaport Z, Manor T, Barbiro-Michaely E, Mendelman A, Mayevsky A. Multiparameteric monitoring of rat brain functions during experimental retraction. Neurosci Lett Suppl. 1998;51:S21.

    Google Scholar 

  135. Mayevsky A, Kraut A, Manor T, Sonn J, Zurovsky Y. Optical monitoring of tissue viability using reflected spectroscopy in vivo. In: Tuchin VV, editor. Optical technologies in biophysics and medicine. SPIE, Saratov fall meeting; 2001. p. 409–17.

  136. Mayevsky A, Manor T, Meilin S, Razon N, Ouaknine GE, Orenstein E. Multiparametric monitoring of tissue vitality in clinical situations. Proc SPIE. 2001;4255:33–9.

    Article  CAS  Google Scholar 

  137. Sonn J, Mayevsky A. The effect of ethanol on metabolic, hemodynamic and electrical responses to cortical spreading depression. Brain Res. 2001;908:174–86.

    Article  PubMed  CAS  Google Scholar 

  138. Meilin S, Mendelman A, Sonn J, Manor T, Zarchin N, Mayevsky A. Metabolic and hemodynamic oscillations monitored optically in the brain exposed to various pathological states. Adv Exp Med Biol. 1999;471(141–6):141–6.

    Article  PubMed  CAS  Google Scholar 

  139. Mayevsky A, Rogatsky GG, Sonn J. New multiparametric monitoring approach for real-time evaluation of drug tissue interaction in vivo. Drug Dev Res. 2000;50:457–70.

    Article  CAS  Google Scholar 

  140. Meilin S, Zarchin N, Mayevsky A, Shapira S. Multiparametric responses to cortical spreading depression under nitric oxide synthesis inhibition. In: Weissman BA, Alon N, Shapira S, editors. Biochemical pharmacological and clinical aspects of nitric oxide. New York: Plenum Press; 1995. p. 195–204.

    Chapter  Google Scholar 

  141. Meilin S, Rogatsky GG, Thom SR, Zarchin N, Guggenheimer-Furman E, Mayevsky A. Effects of carbon monoxide exposure on the brain may be mediated by nitric oxide. J Appl Physiol. 1996;81:1078–83.

    PubMed  CAS  Google Scholar 

  142. Rifkind JM, Nagababu E, Barbiro-Micahely E, Ramsamy S, Pluta RM, Mayevsky A. Nitrite infusion increases cerebral blood flow and decreases mean arterial blood pressure in rats: A role for red cell NO. Nitric Oxide. 2007;16:448–56.

    Article  PubMed  CAS  Google Scholar 

  143. Eibeshitz E, Barbiro-Micahely E, Mayevsky A. The role of nitric oxide in the ischemic brain evaluated by spectroscopic monitoring of mitochondrial NADH, microcirculatory blood flow and HbO2. SPIE Proc. 2009;7280:1J1–10.

    Google Scholar 

  144. Mayevsky A, Rogatsky GG, Zarchin N, Thom SR. Interrelation between hyperbaric oxygenation and carbon monoxide intoxication in the rat brain in vivo. In: Bennett PB, Marquis RE, editors. Basic and applied high pressure biology. Rochester: University of Rochester Press; 1993. p. 409–20.

    Google Scholar 

  145. Mayevsky A, Meilin A, Rogatsky GG, Zarchin N, Thom SR. Multiparametric monitoring of the awake brain exposed to carbon monoxide. J Appl Physiol. 1995;78:1188–96.

    PubMed  CAS  Google Scholar 

  146. Meilin S, Sonn J, Zarchin N, Rogatsky G, Guggenheimer-Furman E, Mayevsky A. Responses of rat brain to induced spreading depression following exposure to carbon monoxide. Brain Res. 1998;780:323–8.

    Article  PubMed  CAS  Google Scholar 

  147. Mendelman A, Zarchin N, Rifkind J, Mayevsky A. Brain multiparametric responses to carbon monoxide exposure in the aging rat. Brain Res. 2000;867:217–22.

    Article  PubMed  CAS  Google Scholar 

  148. Mendelman A, Zarchin N, Meilin S, Guggenheimer-Furman E, Thom SR, Mayevsky A. Blood flow and ionic responses in the awake brain due to carbon monoxide. Neurol Res. 2002;24:765–72.

    Article  PubMed  CAS  Google Scholar 

  149. Rogatsky GG, Meilin S, Zarchin N, Thom SR, Mayevsky A. Hyperbaric oxygenation affects rat brain function after carbon monoxide exposure. Undersea Hyperb Med. 2002;29:50–8.

    PubMed  CAS  Google Scholar 

  150. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res. 1996;740:268–74.

    Article  PubMed  CAS  Google Scholar 

  151. Mayevsky A, Meilin S, Manor T, Ornstein E, Zarchin N, Sonn J. Multiparametric monitoring of brain oxygen balance under experimental and clinical conditions. Neurol Res. 1998;20(Suppl 1):S76–80.

    PubMed  Google Scholar 

  152. Mayevsky A, Deutsch A, Dekel N, Pewzner E, Jaronkin A. New biomedical device for in vivo multiparametric evaluation of tissue vitality in critical care medicine. In: Vo-Dinh T, Grundfest WS, Benaron DA, Cohn GE, editors. Advanced biomedical and clinical diagnosis system III. Proc: SPIE; 2005. p. 60–70.

    Chapter  Google Scholar 

  153. Schechter M, Sonn J, Mayevsky A. Brain oxygen balance under various experimental pathophysiological conditions. Adv Exp Med Biol. 2009;645:293–9.

    Article  PubMed  Google Scholar 

  154. Mayevsky A, Jamieson D, Chance B. Oxygen poisoning in unanesthetized brain: correlation of pyridine nucleotide redox state and electrical activity. Brain Res. 1974;76:481–91.

    Article  PubMed  CAS  Google Scholar 

  155. Mayevsky A. The effect of trimethadione on brain energy metabolism and EEG activity of the conscious rat exposed to HPO. J Neurosci Res. 1975;1:131–42.

    Article  PubMed  CAS  Google Scholar 

  156. Mayevsky A. Multiparameter monitoring of the awake brain under hyperbaric oxygenation. J Appl Physiol. 1983;54:740–8.

    PubMed  CAS  Google Scholar 

  157. Rogatsky GG, Shifrin EG, Mayevsky A. Physiologic and biochemical monitoring during hyperbaric oxygenation: a review. Undersea Hyperb Med. 1999;26:111–22.

    PubMed  CAS  Google Scholar 

  158. Rogatsky GG, Mayevsky A. The life-saving effect of hyperbaric oxygenation during early phase severe blunt chest injuries. Undersea Hyperbaric Med. 2007;34:75–81.

    CAS  Google Scholar 

  159. Meirovitch E, Sonn J, Mayevsky A. Effect of hyperbaric oxygenation on brain hemodynamics, hemoglobin oxygenation and mitochondrial NADH. Brain Res Rev. 2007;54:294–304.

    Article  CAS  Google Scholar 

  160. Rogatsky GG, Mayevsky A. Acute brain and cardio-respiratory dysfunction after blast/blunt injuries: the life-preserving effects of hyperbaric oxygenation. Crit Rev Phys Rehab Med. 2008;20:99–125.

    Article  Google Scholar 

  161. Zarchin N, Mayevsky A. The effects of age on the metabolic and electrical responses to decapitation in the awake and anesthetized rat brain. Mech Ageing Dev. 1981;16:285–94.

    Article  PubMed  CAS  Google Scholar 

  162. Zarchin N, Meilin S, Rifkind AJ, Mayevsky A. Hemodynamic, metabolic, ionic, and electrical responses to cortical spreading depression in aging rats. Adv Exp Med Biol. 1999;471(223–30):223–30.

    Article  PubMed  CAS  Google Scholar 

  163. Zarchin N, Meilin S, Rifkind J, Mayevsky A. Effect of aging on the brain energy-metabolism. Comp Biochem Physiol. 2002;132(part A):117–20.

    Google Scholar 

  164. Nioka S, Smith DS, Mayevsky A, et al. Age dependence of steady state mitochondrial oxidative metabolism in the in vivo g hypoxic dog brain. Neurol Res. 1991;13:25–32.

    PubMed  CAS  Google Scholar 

  165. Mayevsky A. Metabolic, ionic and electrical responses to experimental epilepsy in the awake rat. In: Baldy M, Moulinier DH, Ingvar DH, Meldrum BS, editors. Proceedings first international congress of cerebral blood flow, metabolism and epilepsy. London: John Libbey; 1983. p. 263–70.

    Google Scholar 

  166. Mayevsky A, Chance B. Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Res. 1974;65:529–33.

    Article  PubMed  CAS  Google Scholar 

  167. Mayevsky A, Zeuthen T, Chance B. Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res. 1974;76:347–9.

    Article  PubMed  CAS  Google Scholar 

  168. Crowe W, Mayevsky A, Mela L, Silver IA. Measurements of extracellular potassium, D.C. potential and ECoG in the cortex of the conscious rat during cortical spreading depression. In: Kessler M, et al., editors. Ion and enzyme electrodes in biology and medicine Baltimore. University Park: University Park Press; 1976. p. 299–301.

    Google Scholar 

  169. Mayevsky A, Zarchin N, Friedli CM. Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Res. 1982;236:93–105.

    Article  PubMed  CAS  Google Scholar 

  170. Haselgrove JC, Bashford CL, Barlow CH, Quistorff B, Chance B, Mayevsky A. Time resolved 3-D recording of redox ratio during spreading depression in gerbil brain. Brain Res. 1990;506:109–14.

    Article  PubMed  CAS  Google Scholar 

  171. Maris M, Mayevsky A, Chance B. Frequency domain dynamic measurements of changes of optical pathlength during spreading depression in rodent brain mode. SPIE Proc. 1991;1431:136–48.

    Article  Google Scholar 

  172. Mayevsky A, Weiss HR. Cerebral blood flow and oxygen consumption in cortical spreading depression. J CBF Metab. 1991;11:829–36.

    CAS  Google Scholar 

  173. Sonn J, Mayevsky A. Effects of anesthesia on the responses to cortical spreading depression in the rat brain in vivo. Neurol Res. 2006;28:206–19.

    Article  PubMed  Google Scholar 

  174. Ince C, Coremans JMCC, Bruining HA. In vivo NADH fluorescence. In: Erdmann W, Bruley DF, editors. Oxygen transport to tissue XIV. New York: Plenum Press; 1992. p. 277–96.

    Chapter  Google Scholar 

  175. Balaban RS, Mandel LJ. Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study. Am J Physiol. 1988;254:F407–16.

    PubMed  CAS  Google Scholar 

  176. Harbig K, Chance B, Kovach AGB, Reivich M. In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. J Appl Physiol. 1976;41:480–8.

    PubMed  CAS  Google Scholar 

  177. Bradley RS, Thorniley MS. A review of attenuation correction techniques for tissue fluorescence. J R Soc Interface. 2006;3:1–13.

    Article  PubMed  CAS  Google Scholar 

  178. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. In: Nord FF, editor. Advances in enzymology. New York: Interscience Publisher, Inc.; 1956. p. 65–134.

    Google Scholar 

  179. Leao AAP. Spreading depression of activity in cerebral cortex. J Neurophysiol. 1944;7:359–90.

    Google Scholar 

  180. Rosenthal M, Somjen G. Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. J Neurophysiol. 1973;36:739–49.

    PubMed  CAS  Google Scholar 

  181. LaManna JC, Peretsman SJ, Light AI, Rosenthal M. Oxygen sufficiency in the “working” brain. In: Kovach AGB, Dora E, Silver IA, editors. Oxygen transport to tissue; 1981. p. 95–96.

  182. LaManna JC, Rosenthal M. Effect of ouabain and phenobarbital on oxidative metabolic activity associated with spreading cortical depression in cats. Brain Res. 1975;88:145–9.

    Article  PubMed  CAS  Google Scholar 

  183. Lothman E, LaManna J, Cordingley G, Rosenthal M, Somjen G. Responses of electrical potential potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res. 1975;88:15–36.

    Article  PubMed  CAS  Google Scholar 

  184. Somjen GG, Rosenthal M, Cordingley G, LaManna J, Lothman E. Potassium, neuroglia, and oxidative metabolism in central gray matter. Fed Proc. 1976;35:1266–71.

    PubMed  CAS  Google Scholar 

  185. Sylvia AL, Rosenthal M. Effects of age on brain oxidative metabolism in vivo. Brain Res. 1979;165:235–48.

    Article  PubMed  CAS  Google Scholar 

  186. Haselgrove J, Barlow C, Eleff E, Chance B, Lebordais S. Correlation of electrical signals and mitochondrial redox state during spreading depression. In: Kovach AGB, Dora E, Kessler M, Silver IA, editors. Oxygen transport to tissue. Budapest: Pergamon Press; 1981. p. 25–6.

    Google Scholar 

  187. Kovach AGB, Dora E, Gyulai L. Relationship between steady redox state and brain activation- induced NAD/NADH redox responses. Adv Exp Med Biol. 1984;169:81–100.

    Article  PubMed  CAS  Google Scholar 

  188. Dora E, Gyulai L, Kovach AGB. Determinants of brain activation-induced cortical NAD/NADH responses in vivo. Brain Res. 1984;299:61–72.

    Article  PubMed  CAS  Google Scholar 

  189. Jobsis FF, O’Connor M, Vitale A, Vreman H. Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. Neurophysiology. 1971;34:735–49.

    PubMed  CAS  Google Scholar 

  190. Vern B, Schuette WH, Whitehouse WC, Mutsuga N. Cortical oxygen consumption and NADH fluorescence during metrazol seizures in normotensive and hypotensive cats. Exp Neurol. 1976;52:82–99.

    Article  Google Scholar 

  191. Mayevsky A. Shedding light on the awake brain. In: Dutton PL, Leigh J, Scarpa A, editors. Frontiers in bienergetics: from electrons to tissues. New York: Academic Press; 1978. p. 1467–76.

    Chapter  Google Scholar 

  192. Mayevsky A. Brain oxygen toxicity. Invited review. In: Bachrach AJ, Matzen MM, editors. Underwater physiology. 8th Symposium undersea medical society, Bethesda, Maryland; 1984, p. 69–89.

  193. Mayevsky A, Shaya B. Factors affecting the development of hyperbaric oxygen toxicity in the awake rat brain. J Appl Physiol. 1980;49:700–7.

    PubMed  CAS  Google Scholar 

  194. Rosenthal M, Martel DL. Ischemia-induced alterations in oxidative “recovery” metabolism after spreading cortical depression in situ. Exp Neurol. 1979;63:367–78.

    Article  PubMed  CAS  Google Scholar 

  195. Chance B, Tobels F. Changes in fluorescence in a frog sartorius muscle following a twitch. Nature. 1959;184:195–6.

    Article  CAS  Google Scholar 

  196. Chance B. Continuous recording of intracellular reduced pyridine nucleotide changes in skeletal muscle in vivo. Tex Rep Biol Med. 1964;22:836–41.

    PubMed  Google Scholar 

  197. Acad B, Guggenheimer E, Sonn J, Kedem J. Differential effects of various inotropic agents on the intracellular NADH redox level in the in vivo dog heart. J Cardiovasc Pharmacol. 1983;5:284–90.

    Article  PubMed  CAS  Google Scholar 

  198. Osbakken M, Blum H, Wang DJ, et al. In vivo mechanisms of myocardial functional stability during physiological interventions. Gen Cardiol. 1991;79:1–13.

    Article  CAS  Google Scholar 

  199. Chance B, Schoener B, Schindler F. The intracellular oxidation-reduction state. In: Dickens F, Neil E, editors. Oxygen in the animal organism. Oxford: Pergamon Press; 1964. p. 367–92.

    Google Scholar 

  200. Rosenthal M, Jobsis FF. Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J Neurophysiol. 1971;34:750–62.

    PubMed  CAS  Google Scholar 

  201. Crowe W, Mayevsky A, Mela L. Application of a solid membrane ion selective electrode to in vivo measurements. Am J Physiol. 1977;233:C56–60.

    PubMed  CAS  Google Scholar 

  202. Mayevsky A, Crowe W, Mela L. The interrelation between brain oxidative metabolism and extracellular potassium in the unanesthetized gerbil. Neurol Res. 1980;1:213–26.

    PubMed  CAS  Google Scholar 

  203. Acad B, Sonn J, Furman E, Scheinowitz M, Kedem J. Specific effects of nitroprusside on myocardial O2 balance following coronary ligation in the dog heart. J Cardiovasc Pharmacol. 1987;9:79–86.

    PubMed  CAS  Google Scholar 

  204. Mayevsky A, Lebourdais S, Chance B. The interrelation between brain PO2 and NADH oxidation- reduction state in the gerbil. J Neurosci Res. 1980;5:173–82.

    Article  PubMed  CAS  Google Scholar 

  205. Friedli CM, Sclarsky DS, Mayevsky A. Multiprobe monitoring of ionic, metabolic and electrical activities in the awake brain. Am J Physiol. 1982;243:R462–9.

    PubMed  CAS  Google Scholar 

  206. Mayevsky A, Subramanian VH, Nioka S, Barlow C, Haselgrove J, Chance B. Brain energy metabolism evaluated simultaneously in the newborn dog by 31P NMR spectroscopy and NADH fluorometry/reflectometry in vivo. J CBF Metab. 1985; 5(Supplement):400–1.

    Google Scholar 

  207. Mayevsky A, Frank KH, Nioka S, Kessler M, Chance B. Oxygen supply and brain function in vivo: a multiparametric monitoring approach in the Mongolian gerbil. In: Piiper J, Goldstick TK, Meyer M, editors. Oxygen transport to tissue XII. New York: Plenum Press; 1990. p. 303–13.

    Chapter  Google Scholar 

  208. Mayevsky A, Deutsch A, Dekel N, Pewzner E, Jaronkin A. New biomedical device for in vivo multiparametric evaluation of tissue vitality in critical care medicine. In: Vo-Dinh T, Grundfest WS, Benaron DA, Cohn GE, editors. Advanced biomedical and clinical diagnosis system III. Proc SPIE; 2005. p. 60–70.

  209. Mayevsky A, Walden R, Pewzner E, et al. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system. J Biomed Opt. 2011;16:067004.

    Article  PubMed  CAS  Google Scholar 

  210. Mayevsky A, Barbiro-Micahely E. Shedding light on mitochondrial function by real time monitoring of NADH Fluorescence II. Human studies. J Clin Monit Comput. 2012 (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Mayevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayevsky, A., Barbiro-Michaely, E. Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies. J Clin Monit Comput 27, 1–34 (2013). https://doi.org/10.1007/s10877-012-9414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-012-9414-5

Keywords

Navigation