Skip to main content
Log in

First-Principles Investigation of Trimetallic Clusters: GaMnLi n (n = 1–12)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The lowest-energy structures and low-lying isomers of double impurity atoms, Ga and Mn, doped Li n (n = 1–12) clusters have been systematically investigated using density functional theory. The trimetallic clusters show larger relative binding energies compared with the bare Li n+2 partners, indicating doping with Ga and Mn atoms could enhance the stabilities of Li n clusters. The HOMO–LUMO gaps, the vertical ionization potentials and the vertical electron affinities have also been analyzed and compared with the pure lithium clusters. The magnetism calculations demonstrate that the magnetic moments of GaMnLi n clusters show a tunable magnetic properties with the increasing number of Li atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Benichou, A. R. Allouche, M. Aubert-Frecon, R. Antoine, M. Broyer, P. Dugourd, and D. Rayane (1998). Chem. Phys. Lett. 290, 171.

    Article  CAS  Google Scholar 

  2. L. R. Brock, A. M. Knight, J. E. Reddic, J. S. Pilgrim, and M. A. Duncan (1997). J. Chem. Phys. 106, 6268.

    Article  CAS  Google Scholar 

  3. H. W. Sarkas, S. T. Arnold, J. H. Hendricks, V. L. Slager, and K. H. Bowen (1994). Z. Phys. D 29, 209.

    Article  CAS  Google Scholar 

  4. C. Bréchihnac, H. Busch, P. Cahuzac, and J. Leygnier (1994). J. Chem. Phys. 101, 6992.

    Article  Google Scholar 

  5. A. Kornath, A. Kaufmann, A. Zoermer, and R. Ludwig (2003). J. Chem. Phys. 118, 6957.

    Article  CAS  Google Scholar 

  6. I. Muz, M. Atiş, O. Canko, and E. K. Yildirim (2013). Chem. Phys. 418, 14.

    Article  CAS  Google Scholar 

  7. D. Yepes, S. R. Kirk, S. Jenkins, and A. Restrepo (2012). J. Mol. Model. 18, 4171.

    Article  CAS  Google Scholar 

  8. G. Gardet, F. Rogemond, and H. Chermette (1996). J. Chem. Phys. 105, 9933.

    Article  CAS  Google Scholar 

  9. S. E. Wheeler, K. W. Sattelmeyer, P. vR Schleyer, H. F. Schaefer, and C. H. Wu (2004). J. Chem. Phys. 120, 4683.

    Article  CAS  Google Scholar 

  10. R. O. Jones, A. I. Lichtenstein, and J. Hutter (1997). J. Chem. Phys. 106, 4566.

    Article  CAS  Google Scholar 

  11. T. B. Tai, P. V. Nhat, M. T. Nguyen, S. Li, and D. A. Dixon (2011). J. Phys. Chem. A 115, 7673.

    Article  CAS  Google Scholar 

  12. J. Blanc, V. Bonačić-Koutecký, M. Broyer, J. Chevaleyre, P. Koutecký, J. Dugourd, C. Scheuch, J. Wolf, and L. Wöste (1992). J. Chem. Phys. 96, 1793.

    Article  CAS  Google Scholar 

  13. M. W. Sung, R. Kawai, and J. H. Weare (1994). Phys. Rev. Lett. 73, 3552.

    Article  CAS  Google Scholar 

  14. R. Fournier, J. B. Y. Chang, and A. Wong (2003). J. Chem. Phys. 119, 9444.

    Article  CAS  Google Scholar 

  15. N. Goel, S. Gautam, and K. Dharamvir (2012). Int. J. Quantum Chem. 112, 575.

    Article  CAS  Google Scholar 

  16. A. N. Alexandrova and A. I. Boldyrev (2005). J. Chem. Theory Comput. 1, 566.

    Article  CAS  Google Scholar 

  17. A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen (2011). J. Chem. Phys. 134, 044322.

    Article  Google Scholar 

  18. P. Chetri, R. C. Deka, and A. Choudhury (2013). Phys. B Condens. Matter 430, 74.

    Article  CAS  Google Scholar 

  19. I. Boustani, W. Pewestorf, P. Fantucci, V. Bonaić-Koutecký, and J. Koutecký (1987). Phys. Rev. B 35, 9437.

    Article  CAS  Google Scholar 

  20. Z. Y. Jiang, K. H. Lee, S. T. Li, and S. Y. Chu (2006). Int. J. Mass Spectrosc. 253, 104.

    Article  CAS  Google Scholar 

  21. J. Pérez, E. Flórez, C. Hadad, P. Fuentealba, and A. Restrepo (2008). J. Phys. Chem. A 112, 5749.

    Article  Google Scholar 

  22. M. D. Deshpande and D. G. Kanhere (2002). Phys. Rev. A 65, 033202.

    Article  Google Scholar 

  23. T. Baruah and D. G. Kanhere (2001). Phys. Rev. A 63, 063202.

    Article  Google Scholar 

  24. A. Meden, J. Mavri, M. Bele, and S. Pejovnik (1995). J. Phys. Chem. 99, 4252.

    Article  CAS  Google Scholar 

  25. K. A. Nguyen and K. Lammertsma (1998). J. Phys. Chem. A 102, 1608.

    Article  CAS  Google Scholar 

  26. K. A. Nguyen, G. N. Srinivas, T. P. Hamilton, and K. Lammertsma (1999). J. Phys. Chem. A 103, 710.

    Article  CAS  Google Scholar 

  27. T. B. Tai and M. T. Nguyen (2010). Chem. Phys. 375, 35.

    Article  CAS  Google Scholar 

  28. T. B. Tai and M. T. Nguyen (2010). Chem. Phys. Lett. 489, 75.

    Article  CAS  Google Scholar 

  29. A. I. Boldyrev, J. Simons, and P. vR Schleyer (1993). J. Chem. Phys. 99, 8793.

    Article  CAS  Google Scholar 

  30. A. I. Boldyrev, N. Gonzales, and J. Simons (1994). J. Phys. Chem. 98, 9931.

    Article  CAS  Google Scholar 

  31. A. V. Nemukhin, J. Almlof, and A. Heiberg (1980). Chem. Phys. Lett. 76, 601.

    Article  CAS  Google Scholar 

  32. V. Kuma (1999). Phys. Rev. B 60, 2916.

    Article  Google Scholar 

  33. X. Q. Guo, R. Podloucky, and A. J. Freeman (1990). Phys. Rev. B 42, 10912.

    Article  CAS  Google Scholar 

  34. S. Chacko and D. G. Kanhere (2004). Phys. Rev. A 70, 023204.

    Article  Google Scholar 

  35. J. Akola and M. Manninen (2002). Phys. Rev. B 65, 245424.

    Article  Google Scholar 

  36. H. P. Cheng, R. N. Barnett, and U. Landman (1993). Phys. Rev. B 48, 1820.

    Article  CAS  Google Scholar 

  37. M. S. Lee, S. Gowtham, H. He, K. C. Lau, L. Pan, and D. G. Kanhere (2006). Phys. Rev. B 74, 245412.

    Article  Google Scholar 

  38. T. B. Tai and M. T. Nguyen (2012). J. Comput. Chem. 33, 800.

    Article  CAS  Google Scholar 

  39. P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, W. Vanhoutte, H. Weidele, R. E. Silverans, A. N. Vazquez, and P. vR Schleyer (1999). Eur. Phys. J. D 9, 289.

    Article  CAS  Google Scholar 

  40. P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, F. Vanhoutte, H. Weidele, and R. E. Silverans (1999). Chem. Phys. Lett. 302, 571.

    Article  CAS  Google Scholar 

  41. J. Ivanic and C. J. Marsden (1993). J. Am. Chem. Soc. 115, 7503.

    Article  CAS  Google Scholar 

  42. P. vR Schleyer, E. U. Wurthwein, E. Kaufman, T. Lark, and J. A. Pople (1983). J. Am. Chem. Soc. 105, 5930.

    Article  Google Scholar 

  43. K. Joshi and D. G. Kanhere (2002). Phys. Rev. A 65, 043203.

    Article  Google Scholar 

  44. S. Shetty, S. Pal, and D. G. Kanhere (2003). J. Chem. Phys. 118, 7288.

    Article  CAS  Google Scholar 

  45. K. Joshi and D. G. Kanhere (2003). J. Chem. Phys. 119, 12301.

    Article  CAS  Google Scholar 

  46. G. Gopakumar, P. Lievens, and M. T. Nguyen (2007). J. Phys. Chem. A 111, 4353.

    Article  CAS  Google Scholar 

  47. V. T. Ngan, J. H. Haeck, H. T. Le, G. Gopakumar, P. Lievens, and M. T. Nguyen (2009). J. Phys. Chem. A 113, 9080.

    Article  CAS  Google Scholar 

  48. Z. Guo, B. Lu, X. Jiang, J. Zhao, and R. H. Xie (2010). Physica E 42, 1755.

    Article  CAS  Google Scholar 

  49. H. Kudo (1992). Nature 355, 432.

    Article  CAS  Google Scholar 

  50. M. Deshpande, A. Dhavale, R. R. Zope, S. Chacko, and D. G. Kanhere (2000). Phys. Rev. A 62, 063202.

    Article  Google Scholar 

  51. Y. Li, D. Wu, Z. R. Li, and C. C. Sun (2007). J. Comput. Chem. 28, 1677.

    Article  CAS  Google Scholar 

  52. Y. Li, Y. J. Liu, D. Wu, and Z. R. Li (2009). Phys. Chem. Chem. Phys. 11, 5703.

    Article  CAS  Google Scholar 

  53. T. B. Tai, P. V. Nhat, and M. T. Nguyen (2010). Phys. Chem. Chem. Phys. 12, 11477.

    Article  CAS  Google Scholar 

  54. P. Shao, X. Y. Kuang, L. P. Ding, M. M. Zhong, and Z. H. Wang (2013). Mol. Phys. 111, 569.

    Article  CAS  Google Scholar 

  55. M. Zhang, J. F. Zhang, X. J. Feng, H. Y. Zhang, L. X. Zhao, Y. H. Luo, and W. Cao (2013). J. Phys. Chem. A 117, 13025.

    Article  CAS  Google Scholar 

  56. J. U. Reveles, et al. (2009). Nat. Chem. 1, 310.

    Article  CAS  Google Scholar 

  57. Z. Luo and A. W. Castleman (2014). Acc. Chem. Res. 47, 2931.

    Article  CAS  Google Scholar 

  58. M. Zhang, J. F. Zhang, T. Gu, H. Y. Zhang, Y. H. Luo, and W. Cao (2015). J. Phys. Chem. A 119, 3458.

    Article  CAS  Google Scholar 

  59. Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). Comput. Phys. Commun. 183, 2063–2070.

    Article  CAS  Google Scholar 

  60. Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma (2012). J. Chem. Phys. 137, 224108.

    Article  Google Scholar 

  61. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  62. J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.

    Article  CAS  Google Scholar 

  63. A. D. Becke (1988). Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  64. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  65. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  66. F. W. Froben, W. Schulze, and U. Kloss (1983). Chem. Phys. Lett. 99, 500.

    Article  Google Scholar 

  67. H. J. Himmel and B. Gaertner (2004). Chem. Eur. J. 10, 5936.

    Article  CAS  Google Scholar 

  68. M. D. Morse (1986). Chem. Rev. (Washington, D.C.) 86, 1049.

    Article  CAS  Google Scholar 

  69. X. Wang, A. A. Adeleke, W. Cao, Y. H. Luo, M. Zhang, and Y. Yao (2016). J. Phys. Chem. C 120, 25588.

    Article  CAS  Google Scholar 

  70. M. Zhang, H. Y. Zhang, L. N. Zhao, Y. Li, and Y. H. Luo (2012). J. Phys. Chem. A 116, 1493.

    Article  CAS  Google Scholar 

  71. J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coordin. Chem. Rev. 289, 315.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11204079 and 11304096), the Natural Science Foundation of Shanghai (Grant No. 15ZR1409600), and the Fundamental Research Funds for the Central Universities of China (Nos. 222201514320, 222201714018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang or Youhua Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, L., Feng, X. et al. First-Principles Investigation of Trimetallic Clusters: GaMnLi n (n = 1–12). J Clust Sci 28, 2323–2335 (2017). https://doi.org/10.1007/s10876-017-1226-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1226-9

Keywords

Navigation