Skip to main content

Advertisement

Log in

Synthesis and Characterization of Ni-doped TiO2 Nanostructures as an Active Self-cleaning Cover on Floor-Tile Surface

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, Ni doped titanium dioxide (Ni-doped TiO2) nanostructures were synthesized by reverse microemulsion method. The effect of calcination temperature on the purity and morphology of Ni-doped TiO2 nanostructures was investigated. The products were characterized by various analyses such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and diffuse reflectance spectroscopy. The existence of Ni as dopants was confirmed by decreasing in band gap of TiO2. The pH influence to photoactivity of the as-prepared Ni-doped TiO2 was investigated through decomposition of Acid Red 1 (A.R.1.), Reactive Blue 21 (R.A.21.) and Acid Blue 74 (A.B.74.) as organic pollutants. The kinetic studies revealed that reactions follow the improved Langmuir–Hinshelwood model. The hydrophilicity, surface and interfacial interactions of the products on the floor tile was investigated by wetting experiments and a sessile drop technique at room temperature. The results confirmed that Ni-doped TiO2 has hydrophilicity property, so it can be used as an effective photocatalytic cover for preparation of self-cleaning surfaces under UV irradiation and visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Motahari, M. R. Mozdianfard, F. Soofivand, and M. Salavati-Niasari (2014). RSC Adv. 4, 53.

    Article  Google Scholar 

  2. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Y. Faal, and S. Bagheri (2016). Adv. Powder Technol. 27, 5.

    Article  Google Scholar 

  3. F. Soofivand, F. Mohandes, and M. Salavati-Niasari (2013). Mater. Res. Bull. 48, 6.

    Article  Google Scholar 

  4. F. Soofivand and M. Salavati-Niasari (2015). RSC Adv. 5, 79.

    Article  Google Scholar 

  5. M. Hosseini (2011). Zori. J. Inorg. Organomet. Polym. Mater. 21, 1.

    Article  Google Scholar 

  6. M. Hosseini Zori and A. Soleimani-Gorgani (2012). J. Eur. Ceram. Soc. 32, 16.

    Article  Google Scholar 

  7. M. Hosseini-Zori, Study on the Hydrophobized Changes in Wettability of Sol–Gel Synthesized Nano Titanium Dioxide Films, Advanced Materials Research (Trans Tech Publications, 2014), pp. 362–365.

  8. H. Wang, Z. Tang, L. Sun, Y. He, Y. Wu, and Z. Li (2009). Rare Met. 28, 3.

    Google Scholar 

  9. A. Fujishima (1972). Nature 238, 37.

    Article  CAS  Google Scholar 

  10. S. Valencia, J. M. Marín, and G. Restrepo (2010). Open Mater. Sci. J. 4, 1.

    Google Scholar 

  11. A. A. Murashkina, P. D. Murzin, A. V. Rudakova, V. K. Ryabchuk, A. V. Emeline, and D. W. Bahnemann (2015). J. Phys. Chem. C 119, 44.

    Article  Google Scholar 

  12. B. Roose, S. Pathak, and U. Steiner (2015). Chem. Soc. Rev. 44, 22.

    Article  Google Scholar 

  13. N. S. Leyland, J. Podporska-Carroll, J. Browne, S. J. Hinder, B. Quilty, and S. C. Pillai (2016). Sci. Rep. 6, 24770.

    Article  CAS  Google Scholar 

  14. J. B. Bellam, M. A. Ruiz-Preciado, M. Edely, J. Szade, A. Jouanneaux, and A. H. Kassiba (2015). RSC Adv. 5, 14.

    Article  Google Scholar 

  15. B. Yacoubi, L. Samet, J. Bennaceur, A. Lamouchi, and R. Chtourou (2015). Mater. Sci. Semicond. Process. 30, 361.

    Article  CAS  Google Scholar 

  16. S. G. Shin, C. W. Bark, and H. W. Choi (2014). Mol. Cryst. Liq. Cryst. 600, 1.

    Article  Google Scholar 

  17. T. S. Eom, K. H. Kim, C. W. Bark, and H. W. Choi (2014). Mol. Cryst. Liq. Cryst. 600, 1.

    Article  Google Scholar 

  18. A. Shalan and M. Rashad (2013). Appl. Surf. Sci. 283, 975.

    Article  CAS  Google Scholar 

  19. A. Malik, S. Hameed, M. Siddiqui, M. Haque, K. Umar, A. Khan, and M. Muneer (2014). J. Mater. Eng. Perform. 23, 9.

    Google Scholar 

  20. P. Archana, E. N. Kumar, C. Vijila, S. Ramakrishna, M. Yusoff, and R. Jose (2013). Dalton Trans. 42, 4.

    Article  Google Scholar 

  21. J. Navas, C. Fernández‐Lorenzo, T. Aguilar, R. Alcántara, and J. Martín‐Calleja (2012). Phys. Status Solidi (a) 209(2), 378.

    Article  CAS  Google Scholar 

  22. A. G. Niaki, A. Bakhshayesh, and M. Mohammadi (2014). Sol. Energy 103, 210.

    Article  Google Scholar 

  23. Z. Ali, K. H. Park, I. Shakir, and D. J. Kang (2015). Electrochim. Acta 161, 329.

    Article  CAS  Google Scholar 

  24. S. Chen, J. Lin, and J. Wu (2014). J. Mater. Sci. Mater. Electron. 25, 5.

    Google Scholar 

  25. S. Chen, J. Lin, and J. Wu (2014). Appl. Surf. Sci. 293, 202.

    Article  CAS  Google Scholar 

  26. P. Archana, A. Gupta, M. M. Yusoff, and R. Jose (2014). Appl. Phys. Lett. 105, 15.

    Article  Google Scholar 

  27. M. Dürr, S. Rosselli, A. Yasuda, and G. Nelles (2006). J. Phys. Chem. B 110, 43.

    Google Scholar 

  28. L. Long, L. Wu, X. Yang, and X. Li (2014). J. Mater. Sci. Technol. 30, 8.

    Article  Google Scholar 

  29. S. G. Kim, M. J. Ju, I. T. Choi, W. S. Choi, H.-J. Choi, J.-B. Baek, and H. K. Kim (2013). RSC Adv. 3, 37.

    Google Scholar 

  30. J. Luo, J. Zhou, H. Guo, W. Yang, B. Liao, W. Shi, and Y. Chen (2014). RSC Adv. 4, 99.

    Google Scholar 

  31. M.-C. Kao, H.-Z. Chen, and S.-L. Young (2013). Jpn. J. Appl. Phys. 52, 1S.

    Article  Google Scholar 

  32. K. Lee and P. Schmuki, Electrochemistry Communications 25, (2012).

  33. Z. Tong, T. Peng, W. Sun, W. Liu, S. Guo, and X.-Z. Zhao (2014). J. Phys. Chem. C 118, 30.

    Google Scholar 

  34. J. H. Yang, K. H. Kim, C. W. Bark, and H. W. Choi (2014). Mol. Cryst. Liq. Cryst. 598, 1.

    Article  Google Scholar 

  35. J. Tauc, R. Grigorovici, and A. Vancu (1966). Phys. Status Solidi (b) 15(2).

  36. K. M. Reddy, S. V. Manorama, and A. R. Reddy (2003). Mater. Chem. Phys. 78, 1.

    Article  Google Scholar 

  37. K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb, and H. Shivaraju (2016). Desalin. Water Treat. 57, 25256.

    Article  CAS  Google Scholar 

  38. J.-M. Herrmann (1999). Catal. Today 53, 1.

    Article  Google Scholar 

  39. S. J. Darzi, A. Mahjoub, and S. Sarfi (2012). Iran. J. Mater. Sci. Eng 9, 3.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Council of Institute for Colorants, Paint and Coatings-ICST, Tehran, Iran for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Hosseini-Zori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan Shahriari, M., Hosseini-Zori, M. Synthesis and Characterization of Ni-doped TiO2 Nanostructures as an Active Self-cleaning Cover on Floor-Tile Surface. J Clust Sci 28, 2253–2267 (2017). https://doi.org/10.1007/s10876-017-1216-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1216-y

Keywords

Navigation