Skip to main content
Log in

Facile Aglaia elaeagnoidea Mediated Synthesis of Silver and Gold Nanoparticles: Antioxidant and Catalysis Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A facile and green route for the synthesis of metallic nanoparticles is of significant intriguing, as it provides simple, rapid, clean, nontoxic, easily available, energy-efficient, cost-effective fabrication method. We reported environmentally benign and unexplored plant Aglaia elaeagnoidea flower extract for the synthesis of spherical and crystalline silver (Ag) and gold (Au) nanoparticles with an excellent robustness against agglomeration. The resultant nanoparticles were characterized using UV–Vis spec., FTIR, XRD, FESEM, EDAX, and TEM techniques. The uniqueness of our method lies in fast synthesis (10 min for Ag NPs) and ultra rapid homogeneous and heterogeneous complete degradation of Methylene Blue and Congo Red within few seconds using the synthesized Ag and Au NPs as the catalyst, respectively. Whereas more than 90% conversion of 4-Nitrophenol to 4-Aminophenol within few minutes for homogenous and few seconds for heterogeneous method using Ag and Au NPs were obtained. Hence, the results of this study demonstrate the possible application of biosynthesized of Ag and Au NPs as nanocatalyst in waste water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, and D. Mandal (2009). Colloids Surf. B Biointerfaces 71, 113.

    Article  CAS  Google Scholar 

  2. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Bio. Med. 6, 257.

    Article  CAS  Google Scholar 

  3. M. C. Moulton, L. K. Braydich-Stolle, M. N. Nadagouda, S. Kunzelman, S. M. Hussain, and R. S. Varma (2010). Nanoscale 2, 763.

    Article  CAS  Google Scholar 

  4. V. K. Vidhu and D. Philip (2014). Spectrochim. Acta Mol. Biomol. Spectrosc. 117, 102.

    Article  CAS  Google Scholar 

  5. S. Yallappa, J. Manjanna, S. K. Peethambar, A. N. Rajeshwara, and N. D. Satyanarayan (2013). J. Clust. Sci. 24, 1081.

    Article  CAS  Google Scholar 

  6. V. K. Vidhu and D. Philip (2014). Micron 56, 54.

    Article  CAS  Google Scholar 

  7. P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, and M. Saravananc (2013). Colloids Surf. B 108, 255.

    Article  CAS  Google Scholar 

  8. R. Mariselvam, A. J. Ranjitsingh, A. U. Nanthini, K. Kalirajan, C. Padmalatha, and P. M. Selvakumar (2014). Spectrochim. Acta Mol. Biomol. Spectrosc. 129, 537.

    Article  CAS  Google Scholar 

  9. J. Y. Song, H. K. Jang, and S. B. Kim (2009). Process Biochem. 44, 1133.

    Article  CAS  Google Scholar 

  10. S. Maity, I. K. Sen, and S. S. Islam (2012). Phys. E 45, 130.

    Article  CAS  Google Scholar 

  11. A. Lateef, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, L. S. Beukes, and Kolanut (2016). J Clust. Sci. 27, 1561.

    Article  CAS  Google Scholar 

  12. T. Y. Suman, S. R. R. Rajshree, R. Ramkumar, C. Rajthilak, and P. Perumal (2014). Spectrochim. Acta A 118, 11.

    Article  CAS  Google Scholar 

  13. K. T. Chung and C. E. Cerniglia (1992). Mutat. Res./Rev. Genet. Toxicol. 277, 201.

    Article  CAS  Google Scholar 

  14. J. Xia, G. He, L. Zhang, X. Sun, and X. Wang (2016). Appl. Catal. B Env. 180, 408.

    Article  CAS  Google Scholar 

  15. M. Nasrollahzadeh, S. M. Sajadi, and M. Khalaj (2014). RSC Adv. 4, 47313.

    Article  CAS  Google Scholar 

  16. D. S. Sheny, D. Philip, and J. Mathew (2012). Spectrochim. Acta Mol. Biomol. Spectrosc. 91, 35.

    Article  CAS  Google Scholar 

  17. T. Shahwan, S. A. Sirriah, M. Nairat, E. Boyacı, A. E. Eroglu, T. B. Scott, and K. R. Hallam (2011). Chem. Eng. J. 172, 258.

    Article  CAS  Google Scholar 

  18. C. P. Khare (2008). Spring. Sci. Bus. Med., pp. 34–35.

  19. K. K. N. Nair (1981). Bombay Nat. Hist. Soc. J. 78, 425.

    Google Scholar 

  20. M. J. Bhandary and K. R. Chandrashekar (2011). Indian J. Tradit. Know. 10, 528.

    Google Scholar 

  21. B. Jayaprasad, and P. S. Sharavanan, Int. Res. J. Pharm. 4, 29.

  22. G. E. Trease, and W. C. Evans (1989). Pharmacognosy. 11th Edn. BrailliarTiridel Can. Macmillian Publishers 5, 10.

  23. A. J. Harborne (1998). Spring. Sci. Bus. Med.

  24. C. K. Kokate (2000). Pract. Pharm. 9.

  25. J. F. Moran, R. V. Klucas, R. J. Grayer, J. Abian, and M. Becana (1997). Free Radic. Biol. Med. 22, 861.

    Article  CAS  Google Scholar 

  26. M. Mathur (2014). Int. J. Pure App. Biosci. 2, 113.

    Google Scholar 

  27. N. Ahmad, S. Sharma, M. K. Alam, V. N. Singh, S. F. Shamsi, B. R. Mehta, and A. Fatma (2010). Colloids Surf., B Biointerfaces 81, 81.

  28. R. K. Das, S. K. Brar, and M. Verma (2016). Trends Biotechnol. 34, 440.

    Article  CAS  Google Scholar 

  29. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li (2005). J. Phys. Chem. B 109, 13857.

    Article  CAS  Google Scholar 

  30. P. Mulvaney (1996). Langmuir 12, 788.

    Article  CAS  Google Scholar 

  31. S. S. Momeni, M. Nasrollahzadeh, and A. Rustaiyan (2016). J. Colloids Interface. Sci. 472, 173.

    Article  CAS  Google Scholar 

  32. A. Sadollahkhani, Z. H. Ibupoto, S. Elhag, O. Nur, and M. Willander (2014). Ceram. Int. 40, 11311.

    Article  CAS  Google Scholar 

  33. N. Singh and P. K. Khanna (2007). Mater. Chem. Phys. 104, 367.

    Article  CAS  Google Scholar 

  34. C. T. Kamala, K. H. Chu, N. S. Chary, P. K. Pandey, S. L. Ramesh, A. R. Sastry, and K. C. Sekhar (2005). Water Res. 39, 2815.

    Article  CAS  Google Scholar 

  35. G. W. Jeong, Y. W. Lee, M. Kim, and S. W. Han (2009). J. Colloids Interface Sci. 329, 97.

    Article  CAS  Google Scholar 

  36. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller (2005). Langmuir 21, 1931.

    Article  CAS  Google Scholar 

  37. D. Wei, Y. Ye, X. Jia, C. Yuan, and W. Qian (2010). Carbohydr. Res. 345, 74.

    Article  CAS  Google Scholar 

  38. I. Laoufi, M. C. Saint-Lager, R. Lazzari, J. Jupille, O. Robach, S. Garaudée, G. Cabailh, P. Dolle, H. Cruguel, and A. Bailly (2011). J. Phys. Chem. C 115, 4673.

    Article  CAS  Google Scholar 

  39. M. A. Rauf, M. A. Meetani, A. Khaleel, and A. Ahmed (2010). Chem. Eng. J. 157, 373.

    Article  CAS  Google Scholar 

  40. V. S. Suvith and D. Philip (2014). Spectrochim. Acta Mol. Biomol. Spectrosc. 118, 526.

    Article  CAS  Google Scholar 

  41. L. Xu, X. C. Wu, and J. J. Zhu (2008). Nano. 19, 305603.

    Google Scholar 

  42. T. Kamal, S. B. Khan, and A. M. Asiri (2016). Cellulose 23, 1911.

    Article  CAS  Google Scholar 

  43. N. Pradhan, A. Pal, and T. Pal (2001). Langmuir 17, 1800.

    Article  CAS  Google Scholar 

  44. D. M. Dotzauer, J. Dai, L. Sun, and M. L. (2006). Bruening Nano Lett. 6, 2268.

  45. J. Huang, S. Vongehr, S. Tang, H. Lu, and X. Meng (2010). J. Phys. Chem. C 114, 15005.

    Article  CAS  Google Scholar 

  46. H. Zhang, X. Li, and G. Chen (2009). J. Mater. Chem. 19, 8223.

    Article  CAS  Google Scholar 

  47. K. B. Narayanan, H. H. Park, and N. Sakthivel (2013). Spectrochim. Acta Mol. Biomol. Spectrosc. 116, 485.

    Article  CAS  Google Scholar 

  48. B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher (2013). Langmuir 29, 4225.

    Article  CAS  Google Scholar 

  49. J. Park, S. H. Cha, S. Cho, and Y. Park (2016). J. Nano Res. 18, 1.

    Article  Google Scholar 

  50. B. Xia, F. He, and L. Li (2013). Langmuir 29, 4901.

    Article  CAS  Google Scholar 

  51. M. Sharma, A. Mishra, V. Kumar, and S. Basu (2016). Nano 11, 1650046.

    Article  CAS  Google Scholar 

  52. A. Gangula, R. Podila, L. Karanam, C. Janardhana, and A. M. Rao (2011). Langmuir 27, 15268.

    Article  Google Scholar 

  53. L. K. Sen, K. Maity, and S. S. Islam (2013). Carbohydr. Polym. 91, 518.

    Article  CAS  Google Scholar 

  54. P. Siddhuraju, P. S. Mohan, and K. Becker (2002). J. Agric. Food Chem. 79, 67.

    Google Scholar 

  55. K. L. Niraimathi, V. Sudha, R. Lavanya, and P. Brindha (2013). Colloids Surf. B. Biointerfaces 102, 288.

    Article  CAS  Google Scholar 

  56. K. Saritha and U. Saraswathi (2014). World J. Pharm. Sci. 2, 1545.

    Google Scholar 

  57. S. S. Paul, J. P. Saikia, S. K. Samdarshi, and B. K. Konwar (2009). J. Magn. Magn. Mater. 321, 3621.

    Article  CAS  Google Scholar 

  58. P. Saikia, S. Saikia, J. P. S. Paul, B. K. Konwar, and S. K. Samdarshi (2010). Colloids Surf. B: Biointerfaces 78, 146.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Pondicherry University for providing fellowship for the first two authors. We also thanks to Mr. V. Kiran Kumar, Ms. Savitha Veeraragavan and Bharathi for their continuous encouragement during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Manjari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjari, G., Saran, S., Arun, T. et al. Facile Aglaia elaeagnoidea Mediated Synthesis of Silver and Gold Nanoparticles: Antioxidant and Catalysis Properties. J Clust Sci 28, 2041–2056 (2017). https://doi.org/10.1007/s10876-017-1199-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1199-8

Keywords

Navigation