Skip to main content
Log in

Structure and Stability of Gold Nanoparticles Synthesized Using Schinus molle L. Extract

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, we exhibited the results of the green synthesis of gold nanoparticles by aqueous extract of Schinus molle L. leaves. The chemical reaction was carried out by varying the plant extract/precursor salt ratio concentration in the aqueous solution. The structural characterization of the nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis showed that the as-synthesized AuNPs have a face-centered cubic structure. SEM and TEM observations indicated that most of the obtained particles have multiple twinning structures (MTP). The synthesized Au-MTP have particle sizes in the range of 10–60 nm, most of them with an average size of about 24 nm. However, triangular Au plate particles were also obtained, having an average size of 180 nm. Fourier transforms infrared spectroscopy and shows that the functional groups responsible for the chemical reduction of AuNPs are phenolic compounds present in the S. molle L. leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Hussain, N. B. Singh, A. Singh, H. Singh, and S. C. Singh (2016). Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 545–560.

    Article  CAS  Google Scholar 

  2. J. E. Hutchison (2008). Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. Acs. Nano 2, 395–402.

    Article  CAS  Google Scholar 

  3. A. Feurtet-Mazel, S. Mornet, L. Charron, N. Mesmer-Dudons, R. Maury-Brachet, and M. Baudrimont (2016). Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ. Sci. Pollut. Res. 23, 4334–4339.

    Article  CAS  Google Scholar 

  4. M. S. Nejad, M. Khatami, and G. H. S. Bonjar (2016). Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET. Nanobiotechnol. 10, 33–38.

    Article  Google Scholar 

  5. M. Noruzi (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioproc. Biosyst. Eng. 38, 1–14.

    Article  CAS  Google Scholar 

  6. T. N. J. I. Edison, Y. R. Lee, and M. G. Sethuraman (2016). Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta A 161, 122–129.

    Article  CAS  Google Scholar 

  7. G. Sathishkumar, K. J. Pradeep, V. Vignesh, C. Rajkuberan, M. Jeyaraj, M. Selvakumar, J. Rakhi, and S. Sivaramakrishnan (2016). Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J. Mol. Liq. 215, 229–236.

    Article  Google Scholar 

  8. V. Ravichandran, S. Vasanthi, S. Shalini, S. A. Ali Shah, and R. Harish (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett. 180, 264–267.

    Article  CAS  Google Scholar 

  9. B. Paul, B. Bhuyan, D. D. Purkayastha, M. Dey, and S. S. Dhar (2015). Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater. Lett. 148, 37–40.

    Article  CAS  Google Scholar 

  10. A. K. Mittal, Y. Chisti, and U. C. Banerjee (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356.

    Article  CAS  Google Scholar 

  11. V. Kumar and S. K. Yadav (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84, 151–157.

    Article  CAS  Google Scholar 

  12. E. A. Hayouni, I. Chraief, M. Abedrabba, M. Bouix, J.-Y. Leveau, H. Mohammed, and M. Hamdi (2008). Tunisian Salvia officinalis L. and Schinus molle L. essential oils: their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 125, 242–251.

    Article  CAS  Google Scholar 

  13. G. Mie (1908). Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25, 377–445.

    Article  CAS  Google Scholar 

  14. P. Mulvaney (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, (3), 788–800.

    Article  CAS  Google Scholar 

  15. J. Yu, D. Xu, H. N. Guan, C. Wang, and L. K. Huang (2016). Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater. Lett. 166, 110–112.

    Article  CAS  Google Scholar 

  16. S. K. Das, C. Dickinson, F. Lafir, D. F. Brougham, and E. Marsili (2012). Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 14, (5), 1322–1334.

    Article  CAS  Google Scholar 

  17. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán (2008). Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791.

    Article  CAS  Google Scholar 

  18. V. Karthick, V. G. Kumar, T. S. Dhas, K. Govindaraju, S. Sinha, and G. Singaravelu (2015). Biosynthesis of gold nanoparticles and identification of capping agent using gas chromatography-mass spectrometry and matrix assisted laser desorption ionization-mass spectrometry. J. Nanosci. Nanotechnol. 15, (6), 4052–4057.

    Article  CAS  Google Scholar 

  19. R. Esparza, J. Ascencio, G. Rosas, J. F. Sánchez Ramírez, U. Pal, and R. Perez (2005). Structure, stability and catalytic activity of chemically synthesized Pt, Au, and Au–Pt nanoparticles. J. Nanosci. Nanotechnol. 5, 641–647.

    Article  CAS  Google Scholar 

  20. R. Esparza, G. Rosas, M. L. Fuentes, J. S. Ramírez, U. Pal, J. Ascencio, and R. Pérez (2007). Synthesis of gold nanoparticles with different atomistic structural characteristics. Mater. Charact. 58, 694–700.

    Article  CAS  Google Scholar 

  21. E. Pretsch, P. Bühlmann, C. Affolter, E. Pretsch, P. Bhuhlmann, C. Affolter, Structure Determination of Organic Compounds (Springer, Berlin, 2009).

  22. H. Lallawmawma, G. Sathishkumar, S. Sarathbabu, S. Ghatak, S. Sivaramakrishnan, G. Gurusubramanian, and N. S. Kumar (2015). Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ. Sci. Pollut. Res. 22, 17753–17768.

    Article  CAS  Google Scholar 

  23. V. G. Kumar, S. D. Gokavarapu, A. Rajeswari, T. S. Dhas, V. Karthick, Z. Kapadia, and S. Sinha (2011). Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloid Surf. B 87, (1), 159–163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rosas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mares-Briones, F., Rosas, G. Structure and Stability of Gold Nanoparticles Synthesized Using Schinus molle L. Extract. J Clust Sci 28, 1995–2003 (2017). https://doi.org/10.1007/s10876-017-1197-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1197-x

Keywords

Navigation