Skip to main content
Log in

Size Dependent Catalytic Activity of Actinodaphne madraspatana Bedd Leaves Mediated Silver Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Green synthesis of metal nanoparticles using earth abundant materials in the absence of any toxic solvent, reducing agent and protecting group is one of the emerging areas of research in materials chemistry. Herein, we report a green method for the synthesis of silver nanoparticles (AgNPs) using Actinodaphne madraspatana Bedd leaf extract as reducing as well as stabilizing agent. To our delight, AgNPs of different sizes could be readily synthesized by simply changing the pH of plant extract and the average size of AgNPs were found to be 60, 35 and 20 nm at pH 6, 9 and 12 respectively. The efficacy of prepared AgNPs towards the catalytic reduction of 4-nitrophenol (4-NP) has been investigated and the nanocatalysts have demonstrated excellent catalytic activity as evidenced from the rate constants. The kinetics of reduction reaction follows Langmuir–Hinshelwood mechanism, based on which the rate constant ‘k’ was calculated. The effect of catalyst dosage, concentration of 4-NP, concentration of NaBH4 and size of AgNPs towards catalytic reduction of 4-NP has been systematically investigated. It was interesting to notice that the AgNPs have exhibited size dependent catalytic activity towards reduction of 4-NP and the catalytic activity was found to increase with decrease in particle size.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Nemanashi and R. Meijboom (2013). J. Colloid Interface Sci. 389, 260–267.

    Article  CAS  Google Scholar 

  2. X. Qiu, Q. Liu, M. Song, and C. Huang (2016). J. Colloid Interface Sci. 477, 131–137.

    Article  CAS  Google Scholar 

  3. N. A. García (1994). J. Photochem. Photobiol. B 22, 185–196.

    Article  Google Scholar 

  4. R. Rajamanikandan, K. Shanmugaraj, and M. Ilanchelian (2016). J. Cluster Sci.. doi:10.1007/s10876-016-1095-7:1-15.

    Google Scholar 

  5. B. Muller, M. Shahid, and G. Kinet (1999). Corros. Sci. 41, 1323–1331.

    Article  CAS  Google Scholar 

  6. J. F. Corbett (1999). Dyes Pigm. 41, 127–136.

    Article  CAS  Google Scholar 

  7. I. V. Asharani and D. Thirumalai (2012). J. Chin. Chem. Soc. 59, 1455–1460.

    Article  CAS  Google Scholar 

  8. S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal (2010). Langmuir 26, 2885–2893.

    Article  CAS  Google Scholar 

  9. S. Zhang, S. Gai, F. He, Y. Dai, P. Gao, L. Li, Y. Chen, and P. Yang (2014). Nanoscale 6, 7025–7032.

    Article  CAS  Google Scholar 

  10. P. KumaráVerma (2012). Green Chem. 14, 2289–2293.

    Article  Google Scholar 

  11. K. Layek, M. L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, and H. Maheswaran (2012). Green Chem. 14, 3164–3174.

    Article  CAS  Google Scholar 

  12. M. Baron, E. Métay, M. Lemaire, and F. Popowycz (2013). Green Chem. 15, 1006–1015.

    Article  CAS  Google Scholar 

  13. L. Zhou, C. Gao, and W. Xu (2010). Langmuir 26, 11217–11225.

    Article  CAS  Google Scholar 

  14. F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M. Pohl, J. Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, and M. Nielsen (2013). Nat. Chem. 5, 537–543.

    Article  CAS  Google Scholar 

  15. R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, and M. Beller (2013). Science 342, 1073–1076.

    Article  CAS  Google Scholar 

  16. A. Corma and P. Serna (2006). Science 313, 332–334.

    Article  CAS  Google Scholar 

  17. S. Sharma (2015). J. Colloid Interface Sci. 441, 25–29.

    Article  CAS  Google Scholar 

  18. R. Rajesh, E. Sujanthi, S. S. Kumar, and R. Venkatesan (2015). Phys. Chem. Chem. 17, 11329–11340.

    Article  CAS  Google Scholar 

  19. U. Demirci and F. Garin (2008). J. Mol. Catal. A Chem. 279, 57–62.

    Article  CAS  Google Scholar 

  20. L. Ai, X. Gao, and J. Jiang (2014). J. Power Sources 257, 213–220.

    Article  CAS  Google Scholar 

  21. L. Ai and L. Li (2013). Chem. Eng. J. 223, 688–695.

    Article  CAS  Google Scholar 

  22. X. Li, Z. Niu, J. Jiang, and L. Ai (2016). J. Mater. Chem. A 4, 3204–3209.

    Article  CAS  Google Scholar 

  23. W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang, and D. Xue (2016). Appl. Catal. B 181, 371–378.

    Article  CAS  Google Scholar 

  24. S. Lebaschi, M. Hekmati, and H. Veisi (2017). J. Colloid Interface Sci. 485, 223–231.

    Article  CAS  Google Scholar 

  25. S. Sareen, V. Mutreja, B. Pal, and S. Singh (2016). J. Nanopart. Res. 18, 332.

    Article  Google Scholar 

  26. S. S. Kumar, K. Kwak, and D. Lee (2011). Anal. Chem. 83, 3244–3247.

    Article  CAS  Google Scholar 

  27. K. Kwak, S. S. Kumar, K. Pyo, and D. Lee (2013). ACS Nano 8, 671–679.

    Article  Google Scholar 

  28. G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma, and R. P. Singh (2011). J. Nanopart. Res. 13, 2981–2988.

    Article  CAS  Google Scholar 

  29. H. Lu and J. Yao (2014). Curr. Org. Chem. 18, 1365–1372.

    Article  CAS  Google Scholar 

  30. Z. Zhang, C. Shao, Y. Sun, J. Mu, M. Zhang, P. Zhang, Z. Guo, P. Liang, C. Wang, and Y. Liu (2012). J. Mater. Chem. 22, 1387–1395.

    Article  CAS  Google Scholar 

  31. S. Xiao, W. Xu, H. Ma, and X. Fang (2012). RSC Adv. 2, 319–327.

    Article  CAS  Google Scholar 

  32. H. Yin, T. Yamamoto, Y. Wada, and S. Yanagida (2004). Mater. Chem. Phys. 83, 66–70.

    Article  CAS  Google Scholar 

  33. A. Gangula, R. Podila, L. Karanam, C. Janardhana, and A. M. Rao (2011). Langmuir 27, 15268–15274.

    Article  Google Scholar 

  34. C. Prasad, K. Srinivasulu, and P. Venkateswarlu (2015). Ind. Chem. 1, 104.

    Article  Google Scholar 

  35. R. M. Tripathi, N. Kumar, A. Shrivastav, P. Singh, and B. R. Shrivastav (2013). J. Mol. Catal. B Enzym. 96, 75–80.

    Article  CAS  Google Scholar 

  36. M. Nasrollahzadeh, S. M. Sajadi, F. Babaei, and M. Maham (2015). J. Colloid Interface Sci. 450, 374–380.

    Article  CAS  Google Scholar 

  37. D. Saravanan and V. Kasisankar (2013). Int. J. Res. Pharm. Sci. 4, 469–473.

    CAS  Google Scholar 

  38. I. V. Asharani and D. Saravanan (2013). Asian J. Pharm. Clin. Res. 6, 114–118.

    Google Scholar 

  39. B. Suneetha, K. Prasad, B. Soumya, P. D. Nishantha, B. S. Kumar, and D. Rajaneekar (2014). J. Pharmacogn. Phytochem. 6, 1–4.

    Google Scholar 

  40. B. Suneetha, K. Prasad, P. D. Nishanthi, B. Soumya, and B. S. Kumar (2014). J. Pharmacogn. Phytochem. 6, 176–180.

    Google Scholar 

  41. O. V. Kharissova, H. R. Dias, B. I. Kharisov, B. O. Pérez, and V. M. J. Pérez (2013). Trends Biotechnol. 31, 240–248.

    Article  CAS  Google Scholar 

  42. A. A. Kajani, A.-K. Bordbar, S. H. Zarkesh Esfahani, A. R. Khosropour, and A. Razmjou (2014). RSC Adv. 4, 61394–61403.

    Article  CAS  Google Scholar 

  43. V. Reddy, R. S. Torati, S. Oh, and C. Kim (2013). Ind. Eng. Chem. Res. 52, 556–564.

    Article  CAS  Google Scholar 

  44. O. S. Oluwafemi, Y. Lucwaba, A. Gura, M. Masabeya, V. Ncapayi, O. O. Olujimi, and S. P. Songca (2013). Colloids Surf. B Biointerfaces 102, 718–723.

    Article  CAS  Google Scholar 

  45. A. Ahmad, F. Syed, A. Shah, Z. Khan, K. Tahir, A. U. Khan, and Q. Yuan (2015). RSC Adv. 5, 73793–73806.

    Article  CAS  Google Scholar 

  46. C. K. Tagad, S. R. Dugasani, R. Aiyer, S. Park, A. Kulkarni, and S. Sabharwal (2013). Sens. Actuators B Chem. 183, 144–149.

    Article  CAS  Google Scholar 

  47. Y. Cao, R. Zheng, X. Ji, H. Liu, R. Xie, and W. Yang (2014). Langmuir 30, 3876–3882.

    Article  CAS  Google Scholar 

  48. X. Dong, X. Ji, H. Wu, L. Zhao, J. Li, and W. Yang (2009). J. Phys. Chem. C 113, 6573–6576.

    Article  CAS  Google Scholar 

  49. Y. Qin, X. Ji, J. Jing, H. Liu, H. Wu, and W. Yang (2010). Colloids Surf. A Physicochem. Eng. Asp. 372, 172–176.

    Article  CAS  Google Scholar 

  50. S. Agnihotri, S. Mukherji, and S. Mukherji (2014). RSC Adv. 4, 3974–3983.

    Article  CAS  Google Scholar 

  51. A. A. AbdelHamid, M. A. Al-Ghobashy, M. Fawzy, M. B. Mohamed, and M. M. S. A. Abdel-Mottaleb (2013). ACS Sustain. Chem. Eng. 1, 1520–1529.

    Article  CAS  Google Scholar 

  52. T. Sinha and M. Ahmaruzzaman (2015). J. Colloid Interface Sci. 453, 115–131.

    Article  CAS  Google Scholar 

  53. B. Ankamwar, V. Kamble, U. K. Sur, and C. Santra (2016). Appl. Surf. Sci. 366, 275–283.

    Article  CAS  Google Scholar 

  54. A. Ahmad, Y. Wei, F. Syed, M. Imran, Z. U. H. Khan, K. Tahir, A. U. Khan, M. Raza, Q. Khan, and Q. Yuan (2015). RSC Adv. 5, 99364–99377.

    Article  CAS  Google Scholar 

  55. B. Stuart Infrared Spectroscopy (Wiley Online Library, Chichester, 2005).

    Book  Google Scholar 

  56. B. H. Stuart Organic Molecules, in Infrared Spectroscopy: Fundamentals and Applications, (John Wiley & Sons, Ltd, Chichester, UK, 2004) pp. 71–93.

    Book  Google Scholar 

  57. J. Y. Song, H.-K. Jang, and B. S. Kim (2009). Process Biochem. 44, 1133–1138.

    Article  CAS  Google Scholar 

  58. B. Vellaichamy and P. Periakaruppan (2015). RSC Adv. 5, 105917–105924.

    Article  CAS  Google Scholar 

  59. V. Kumar, S. C. Yadav, and S. K. Yadav (2010). J. Chem. Technol. Biotechnol. 85, 1301–1309.

    Article  CAS  Google Scholar 

  60. A. K. Suresh, M. J. Doktycz, W. Wang, J. W. Moon, B. Gu, H. M. Meyer 3rd, D. K. Hensley, D. P. Allison, T. J. Phelps, and D. A. Pelletier (2011). Acta Biomater. 7, 4253–4258.

    Article  CAS  Google Scholar 

  61. J. Tang, Z. Shi, R. M. Berry, and K. C. Tam (2015). Ind. Eng. Chem. Res. 54, 3299–3308.

    Article  CAS  Google Scholar 

  62. P. Liu and M. Zhao (2009). Appl. Surf. Sci. 255, 3989–3993.

    Article  CAS  Google Scholar 

  63. J. A. Johnson, J. J. Makis, K. A. Marvin, S. E. Rodenbusch, and K. J. Stevenson (2013). J. Phys. Chem. C 117, 22644–22651.

    Article  CAS  Google Scholar 

  64. Q. Geng and J. Du (2014). RSC Adv. 4, 16425.

    Article  CAS  Google Scholar 

  65. J.-H. Noh and R. Meijboom (2014). Appl. Surf. Sci. 320, 400–413.

    Article  CAS  Google Scholar 

  66. S. R. Khan, Z. H. Farooqi, Z. Waheeduz, A. Ali, R. Begum, F. Kanwal, and M. Siddiq (2016). Mater. Chem. Phys. 171, 318–327.

    Article  CAS  Google Scholar 

  67. P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astruc (2015). Coord. Chem. Rev. 287, 114–136.

    Article  CAS  Google Scholar 

  68. R. K. Narayanan and S. J. Devaki (2015). Ind. Eng. Chem. Res. 54, 1197–1203.

    Article  CAS  Google Scholar 

  69. M. M. Khan, J. Lee, and M. H. Cho (2014). J. Ind. Eng. Chem. 20, 1584–1590.

    Article  CAS  Google Scholar 

  70. V. K. Vidhu and D. Philip (2014). Micron 56, 54–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully express their gratitude to VIT University, Vellore, India for providing research platform to carry out this research work and providing the instrumental facilities like UV–Vis spectrophotometer, FTIR and XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Viswambaran Asharani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2017_1185_MOESM1_ESM.docx

Zeta potential measurements, UV–Vis absorption spectrum of 4-NP and Plots of ln(At/A0) versus time of different sized AgNPs by varying concentration of catalyst, 4-NP and NaBH4 are provided in supporting information. (DOCX 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badma Priya, D., Asharani, I.V. Size Dependent Catalytic Activity of Actinodaphne madraspatana Bedd Leaves Mediated Silver Nanoparticles. J Clust Sci 28, 1837–1856 (2017). https://doi.org/10.1007/s10876-017-1185-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1185-1

Keywords

Navigation