Skip to main content
Log in

Application of Gold(III) Acetate as a New Precursor for the Synthesis of Gold Nanoparticles in PEG Through Ultrasonic Spray Pyrolysis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present investigation reports the first-time successful synthesis of AuNPs using a new precursor salt of Au(III) acetate through USP. An aqueous solution of this salt was prepared with very limited solubility with H2O. HCl and HNO3 were then added separately to increase the solubility, resulting in a clear, yellowish solution. This enabled the successful formation of AuNPs with USP. In order to improve AuNPs synthesis, NaOH and Na2CO3 were added into the precursor to increase its pH (6–7). With such approach, it was possible to perform USP synthesis using varying concentrations of [Au] in the precursor. Evaporation and reaction temperatures (100 and 300 °C) of USP were chosen based on detected decomposition temperatures of Au(III) acetate with TGA-DT. TEM confirmed the presence of circular shaped, unagglomerated AuNPs having an Fm-3m space group with diameter range of 15–30 and circularity value range of 0.89–0.92. The UV–Vis spectroscopy showed absorbance peaks at 528 and 532 nm. ICP-MS indicated the highest concentration of AuNPs, 79 ppm, by the precursor with the lower initial concentration of [Au]. This could be due to the smallest sedimentation and turbulent losses of larger AuNPs in transport tubes and reaction USP zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AuNPs:

Gold nanoparticles

USP:

Ultrasonic spray pyrolysis

Au(III) acetate:

Gold(III) acetate

TGA-DT:

Thermal gravimetric analysis—differential thermal

MOx :

Metal oxide powder

TEM:

Transmission electron microscopy

UV–Vis:

Ultraviolet visible

SPR:

Surface plasmon resonance

PEG:

Polyethylene glycol

PVP:

Polyvinylpyrrolidone

BSA:

Bovine serum albumin

wt%:

Weight percent

RES:

Reticuloendothelial system

EDX:

Energy-dispersive X-ray spectroscopy

DLS:

Dynamic light scattering

FCC:

Face centered cubic

ICP-OES:

Optical emission spectroscopy with inductively coupled plasma mass

FTIR:

Fourier transform infrared spectroscopy

SD:

Standard deviation

fg:

Femto gram (10−15)

References

  1. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán (2009). Nano Today 4, (3), 244–251.

    Article  Google Scholar 

  2. K. M. Mayer and J. H. Hafner (2011). Chemical Reviews 111, (6), 3828–3857.

    Article  CAS  Google Scholar 

  3. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello (2012). Chemical Reviews 112, (5), 2739–2779.

    Article  CAS  Google Scholar 

  4. J. Z. Zhang Optical Properties and Spectroscopy of Nanomaterials, 1st ed (World Scientific Publishing Company, Singapore, 2009).

    Book  Google Scholar 

  5. P. Alivisatos (2004). Nature Biotechnology 22, 47–52.

    Article  CAS  Google Scholar 

  6. J. L. West and N. J. Halas (2000). Current Opinion in Biotechnology 11, 215–217.

    Article  CAS  Google Scholar 

  7. I. K. Ding, J. Zhu, W. Cai, et al. (2011). Advanced Energy Materials 1, (1), 52–57.

    Article  CAS  Google Scholar 

  8. D. Wu, X. Xu, and X. Liu (2008). The Journal of Chemical Physics 129, 074313.

    Article  Google Scholar 

  9. A. Lahde, I. Koshevoy, T. Karhunen, T. Torvela, T. A. Pakkanen, and J. Jokiniemi (2014). Journal of Nanoparticle Research. doi:10.1007/s11051-014-2716-4.

    Google Scholar 

  10. O. Masala and R. Seshadri (2004). Annual Review of Materials Research 34, 41–81.

    Article  CAS  Google Scholar 

  11. M. Brust and C. J. Kiely (2002). Colloids and Surfaces 202, 175–186.

    Article  CAS  Google Scholar 

  12. Y. Yin, C. Erdonmez, S. Aloni, and A. P. Alivisatos (2006). Journal of the American Chemical Society 128, 12671–12673.

    Article  CAS  Google Scholar 

  13. N. Bao, L. Shen, Y. Wang, P. Padhan, and A. Gupta (2007). Journal of the American Chemical Society 129, 12374–12375.

    Article  CAS  Google Scholar 

  14. H. Hiramatsu and F. E. Osterloh (2004). Chemistry of Materials 16, 2509–2511.

    Article  CAS  Google Scholar 

  15. S. Sun, B. C. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989–1992.

    Article  CAS  Google Scholar 

  16. S. Sun and H. Zeng (2002). Journal of the American Chemical Society 124, 8204–8205.

    Article  CAS  Google Scholar 

  17. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon (1993). Journal of Catalysis 144, 175–192.

    Article  CAS  Google Scholar 

  18. S. Ivanova, V. Pitchon, Y. Zimmermann, and C. Petit (2006). Applied Catalysis, A: General 298, 57–64.

    Article  CAS  Google Scholar 

  19. M. Bowker, A. Nuhu, and J. Soares (2007). Catalysis Today 122, 245–247.

    Article  CAS  Google Scholar 

  20. J. D. Lessard, I. Valsamakis, and M. Flytzani-Stephanopoulos (2012). Chemical Communications 48, 4857–4859.

    Article  CAS  Google Scholar 

  21. A. Hugon, N. E. L. Kolli, and C. Louis (2010). Journal of Catalysis 274, 239–250.

    Article  CAS  Google Scholar 

  22. X. Lu, H. Y. Tuan, B. A. Korgel, and Y. Xia (2008). Chemistry--A European Journal 14, 1584–1591.

    Article  CAS  Google Scholar 

  23. A. Lahde, I. Koshevoy, T. Karhunen, T. Torvela, T. A. Pakkanen, and J. Jokiniemi (2014). Journal of Nanoparticle Research. doi:10.1007/s1105101427164.

    Google Scholar 

  24. M. Garza, I. López, and I. Gómez (2013). Advances in Materials Science and Engineering 916908, 1–5.

    Article  Google Scholar 

  25. S. D. Bakrania, G. K. Rathore, and M. S. Wooldridge (2009). Journal of Thermal Analysis and Calorimetry 95, (1), 117–122.

    Article  CAS  Google Scholar 

  26. H. Sakurai, K. Koga, Y. Iizuka, and M. Kiuchia (2013). Applied Catalysis, A: General 462–463, 236–246.

    Article  Google Scholar 

  27. M. T. Htay, Y. Hashimoto, N. Momose, and K. Ito (2009). Journal of Crystal Growth 311, (20), 4499–4504.

    Article  Google Scholar 

  28. M. A. Montero, M. R. G. Chialvo, and A. C. Chialvo (2009). Journal of Materials Chemistry 19, (20), 3276–3280.

    Article  CAS  Google Scholar 

  29. U. Alver, T. Kılınç, E. Bacaksiz, and S. Nezir (2007). Materials Chemistry and Physics 106, (2–3), 227–230.

    Article  CAS  Google Scholar 

  30. H. Zhang and M. T. Swihart (2007). Chemistry of Materials 19, (6), 1290–1301.

    Article  CAS  Google Scholar 

  31. S. E. Skrabalak and K. S. Suslick (2005). Journal of the American Chemical Society 127, (28), 9990–9991.

    Article  CAS  Google Scholar 

  32. P. Majerič, R. Rudolf, I. Anžel, J. Bogović, S. Stopić, and B. Friedrich (2015). Materials Technology 49, (1), 75–80.

    Google Scholar 

  33. D. Mott, et al. (2009). Chemistry of Materials 22, 261–271.

    Article  Google Scholar 

  34. D. Mott, J. Galkowski, L. Wang, J. Luo, and J. C. Zhong (2007). Langmuir 23, 5740–5745.

    Article  CAS  Google Scholar 

  35. Z. Xu, C. Shen, Y. Hou, H. Gao, and S. Sun (2009). Chemistry of Materials 21, 1778–1780.

    Article  CAS  Google Scholar 

  36. S. D. Bakrania, T. A. Miller, C. Perez, and M. S. Wooldridge (2007). Combustion and Flame 148, 76.

    Article  CAS  Google Scholar 

  37. S. D. Bakrania, C. Perez, and M. S. Wooldridge (2007). Proceedings of the Combustion Institute 31, (II), 1797–1804.

    Article  Google Scholar 

  38. L. Mangolini, E. Thimsen, and U. Kortshagen (2005). Nano Letters 5, (4), 655.

    Article  CAS  Google Scholar 

  39. E. Thimsen and P. Biswas (2005). AIChE Journal 53, (7), 1727.

    Article  Google Scholar 

  40. E. Thimsen, N. Rastgar, and P. Biswas (2005). Journal of Physical Chemistry 112, (11), 4134.

    Google Scholar 

  41. P. Biswas and E. Thimsen Aerosol Measurements, 3rd ed (Wiley-VCH, New York, 2011). (Chapter 33).

    Google Scholar 

  42. R. Rudolf, B. Friedrich, S. Stopic, I. Anzel, S. Tomic, and M. Colic (2012). Journal of Biomaterials Applications 26, 595–612.

    Article  CAS  Google Scholar 

  43. J. Dokic, R. Rudolf, S. Tomic, S. Stopic, B. Friedrich, B. Budic, I. Anzel, and M. Colic (2012). Journal of Biomedical Nanotechnology 8, 528–538.

    Article  CAS  Google Scholar 

  44. M. Afzal, P. K. Butt, and H. Ahmad (1991). Journal of Thermal Analysis 37, 1015.

    Article  Google Scholar 

  45. S. Stopic, R. Rudolf, J. Bogovic, P. Majeric, M. Colic, S. Tomic, M. Jenko, and B. Friedrich (2013). MTAEC9 47, (5), 557–583.

    Google Scholar 

  46. S. Stopic, B. Friedrich, H. U. Fritsching, K. Raic, Synthesis of metallic nanosized particles by ultrasonic spray pyrolysis, IME Metallurgische Prozesstechnik and Metallrecycling, RWTH Aachen, Germany, 1st ed (Shaker Verlag, 2015).

  47. P. Majeric, D. Jenko, B. Budic, S. Tomic, M. Colic, B. Friedrich, and R. Rudolf (2015). Nanoscience and Nanotechnology Letters 7, 1–10.

    Article  Google Scholar 

  48. P. Majerič, B. Friedrich, and R. Rudolf (2015). Materials Technology 49, (1), 791–796.

    Google Scholar 

  49. R. Rudolf, P. Majeric, S. Tomic, M. Shariq, U. Fercec, B. Budic, B. Friedrich, D. Vucevic, M. Colic, Journal of Nanomaterials (2017). doi:10.1155/2017/9365012.

  50. A. Barreto, L. G. Luis, A. V. Girao, T. Trindade, M. Amadeu, V. M. Soares, and M. Oliveira (2015). Journal of Nanoparticle Research. doi:10.1007/s1105101533020.

    Google Scholar 

  51. S. C. Tsai, Y. L. Song, C. S. Tsai, C. C. Yang, W. Y. Chiu, and H. M. Lin (2004). Journal of Materials Science 39, 3647–3657.

    Article  CAS  Google Scholar 

  52. T. Niidome, M. Yamagata, Y. Okamoto, et al. (2006). Journal of Controlled Release 114, (3), 343–347.

    Article  CAS  Google Scholar 

  53. D. K. Kim, S. J. Park, J. H. Lee, Y. Y. Jeong, and S. Y. Jon (2007). Journal of the American Chemical Society 129, (24), 7661–7665.

    Article  CAS  Google Scholar 

  54. C. J. Liu, C. H. Wang, C. C. Chien, et al. (2008). Nanotechnology 19, 29.

    Google Scholar 

  55. S. K. Seol, D. Kim, S. Jung, W. S. Chang, and J. T. Kim (2013). Journal of Nanomaterials. doi:10.1155/2013/531760.

    Google Scholar 

  56. B. D. Warheit (2008). Toxicological Sciences 101, 183–185.

    Article  CAS  Google Scholar 

  57. L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana, and G. Gallo (2012). Marine Environment Research 76, 16–21.

    Article  CAS  Google Scholar 

  58. A. L. Fernandez, A. Fernandez, and J. Blasco (2012). TrAC Trends in Analytical Chemistry 32, 40–59.

    Article  Google Scholar 

  59. T. B. Lee and F. J. Ranville (2012). Journal of Hazardous Materials 213–214, 434–439.

    Article  Google Scholar 

  60. S. Balog, L. R. Lorenzo, A. C. Monnier, M. R. Obiols, B. R. Rothen, P. Schurtenberger, and A. F. Petri (2015). Nanoscale 7, 5991–5997.

    Article  CAS  Google Scholar 

  61. Y. Liu, K. M. Shipton, J. Ryan, D. E. Kaufman, S. Franzen, and L. D. Feldheim (2007). Analytical Chemistry 79, 2221–2229.

    Article  CAS  Google Scholar 

  62. V. J. Jokerst, T. Lobovkina, N. R. Zare, and S. S. Gambhir (2011). Nanomedicine 6, 715–728.

    Article  CAS  Google Scholar 

  63. J. Manson, D. Kumar, B. Meenan, and D. Dixon (2011). Gold Bulletin 44, 99–105.

    Article  CAS  Google Scholar 

  64. L. H. T. Nghiem, T. T. Nguyen, E. Fort, P. T. Nguyen, N. M. T. Hoang, Q. T. Nguyen, and N. H. Tran (2012). Advances in Natural Sciences 3, 015002.

    Google Scholar 

  65. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards (2000). Chemical Society Reviews 29, 27.

    Article  CAS  Google Scholar 

  66. H. Bonnemann and R. M. Richards (2001). European Journal of Inorganic Chemistry 1434, 2455–2480.

    Article  Google Scholar 

  67. X. Sun, S. Dong, and E. Wang (2006). Materials Chemistry and Physics 96, 29–33.

    Article  CAS  Google Scholar 

  68. N. Srivastava and M. Mukhopadhyay (2015). Journal of Cluster Science. doi:10.1007/s10876-014-0726-0.

    Google Scholar 

  69. N. Saha and S. D. Gupta (2016). Journal of Cluster Science. doi:10.1007/s10876-016-1009-8.

    Google Scholar 

  70. A. Parveen and S. Rao (2015). Journal of Cluster Science. doi:10.1007/s10876-014-0813-2.

    Google Scholar 

  71. T. T. Kodas and M. H. Smith Aerosol Processing of Materials, 1st ed (Wiley-VCH, New York, 1999), pp. 45–74.

    Google Scholar 

  72. J. P. Sylvestre, A. V. Kabashin, E. Sacher, and J. H. T. Luong (2004). Journal of the American Chemical Society. doi:10.1021/ja048678s.

    Google Scholar 

  73. G. Cardenas, V. Saez, and C. Cruzat (2015). Journal of Cluster Science. doi:10.1007/s10876-016-1071-2.

    Google Scholar 

Download references

Acknowledgements

The study was supported by the European Union—Erasmus Mundus Action 2 Lot 13 Euphrates Program and Slovenian Research Agency ARRS Slovenia (P2-120 and Martina Program). Many thanks to Dr.Vanja Kokol, Dr. Irena Ban and Mrs. Vera Vivod for helping in the UV–Vis spectroscopy, TGA and FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Shariq.

Ethics declarations

Conflict of interest

All the authors declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariq, M., Majerič, P., Friedrich, B. et al. Application of Gold(III) Acetate as a New Precursor for the Synthesis of Gold Nanoparticles in PEG Through Ultrasonic Spray Pyrolysis. J Clust Sci 28, 1647–1665 (2017). https://doi.org/10.1007/s10876-017-1178-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1178-0

Keywords

Navigation