Skip to main content
Log in

Ozone–Water Interaction Revisited Through [(O3)m···(H2O)n] Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Ozone–water clusters (O3)m···(H2O)n (n = 2, 4, 5, 8, 10 and m = 1–5) have been theoretically investigated using density functional theory, with appropriate correction for BSSE that allow the accurate calculation of binding energies and change in enthalpies for the formation of clusters. For comparison, water clusters (H2O)n (n = 2, 4, 5, 8, 10) have also been studied at the same level of theory. The results presented herein provide a detailed understanding of the binding of ozone with water clusters of varying sizes. While the earlier reports on ozone–water interaction considered 1:1 complexes, the present study discusses the maximum binding capacity of varied sized water clusters towards ozone molecules. This is an important and interesting observation to decide the nature of interaction between ozone molecules and water clusters in light of the debacle between Van der Waals interactions and H-bonding. The study concludes that the maximum number of ozone molecules complexing with a water cluster is directly proportional to the number of hydrogen atoms available in the cluster for hydrogen bonding (H-bonding). In contrast to the previous studies, the present work emphasizes the binding of water clusters with ozone molecules through H-bonding instead of dipole–dipole interactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Maheshwary, N. Patel, N. Sathyamurthy, A. D. Kulkarni, and S. R. Gadre (2001). J. Phys. Chem. A 105, 10525.

    Article  CAS  Google Scholar 

  2. A. J. L. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones (2011). Atmos. Chem. Phys. 11, 4273.

    Article  CAS  Google Scholar 

  3. V. Vaida, H. G. Kjaergaard, and K. J. Feierabend (2003). Int. Rev. Phys. Chem 22, 203.

    Article  CAS  Google Scholar 

  4. V. Vaida (2011). J. Chem. Phys. 135, 020901.

    Article  Google Scholar 

  5. G. K. Schenter, S. M. Kathmann, and B. C. Garrett (1999). Phys. Rev. Lett. 82, 3484.

    Article  CAS  Google Scholar 

  6. J. D. Smith, C. D. Cappa, K. R. Wilson, R. C. Cohen, P. L. Geissler, and R. J. Saykally (2005). Proc. Nat. Acad. Sci. USA 102, 14173.

    Google Scholar 

  7. F. N. Keutsch and R. J. Saykally (2001). Proc. Nat. Acad. Sci. USA 98, 10533.

    Article  CAS  Google Scholar 

  8. C. J. Tsai and K. D. Jordan (1993). J. Phys. Chem. 97, 11227.

    Article  CAS  Google Scholar 

  9. P. T. Buckley and J. W. Birks (1995). Atmos. Environ. 29, 2409.

    Article  CAS  Google Scholar 

  10. B. Jin, M. N. Su, and J. J. M. Lin (2012). J. Phys. Chem. A 116, 12082.

    Article  CAS  Google Scholar 

  11. O. A. Loboda and V. V. Goncharuk (2009). J Water Chem. Technol. 31, 213.

    Article  Google Scholar 

  12. H. Tachikaw and S. Abe (2003). Inorg. Chem. 42, 2188.

    Article  Google Scholar 

  13. H. Tachikawa and S. Abe (2005). Inorg. Chim. Acta. 358, 288.

    Article  CAS  Google Scholar 

  14. J. M. Anglada, G. J. Hoffman, L. V. Slipchenko, M. M. Costa, M. F. Ruiz-Lopez, and J. S. Francisco (2013). J. Phys. Chem. A 117, 10381.

    Article  CAS  Google Scholar 

  15. T. W. Robinson and H. G. Kjaergaard (2003). J. Chem. Phys. 119, 3717.

    Article  CAS  Google Scholar 

  16. I. J. Palmer, W. B. Brown, and I. H. Hillier (1996). J. Chem. Phys. 104, 3198.

    Article  CAS  Google Scholar 

  17. H. O. Leung, M. D. Marshall, R. D. Suenram, and F. J. Lovas (1989). J. Chem. Phys. 90, 700.

    Article  CAS  Google Scholar 

  18. A. Y. Galashev, Climatic Effect of the Greenhouse Gases Clusterization, Planet Earth 2011 - Global Warming Challenges and Opportunities for Policy and Practice by Prof. Elias Carayannis (Ed.), ISBN: 978- 953-307-733-8, (2011).

  19. C. Lee, C. Sosa, M. Planas, and J. J. Novoa (1996). J. Chem. Phys. 104, 7081.

    Article  CAS  Google Scholar 

  20. M. T. Sucarrat, J. S. Francisco, and J. M. J. Anglada (2012). J. Am. Chem. Soc. 134, 20632.

    Article  Google Scholar 

  21. M. Lalitha and L. Senthilkumar (2014). J. Mol. Graphics Model. 54, 148.

    Article  CAS  Google Scholar 

  22. R. B. Viana and A. B. F. DaSilva (2015). Comput. Theor. Chem. 1059, 35.

    Article  CAS  Google Scholar 

  23. R. Hofmann-Sievertt and A. W. Castleman Jr. (1984). J. Phys. Chem. 88, 3329.

    Article  Google Scholar 

  24. K. Liu, M. G. Brown, C. Carter, R. J. Saykally, J. K. Gregory, and D. C. Clary (1996). Nature 381, 501.

    Article  CAS  Google Scholar 

  25. K. Nauta and R. E. Miller (2000). Science 287, 293.

    Article  CAS  Google Scholar 

  26. F. Weinhold (1998). J. Chem. Phys. 109, 367.

    Article  CAS  Google Scholar 

  27. J. M. Ugalde and I. Alkorta (2000). Elguero. J. Angew. Chem. Int. Ed. 39, 717.

    Article  CAS  Google Scholar 

  28. R. Ludwig (2001). Angew. Chem. Int. Ed. 40, 1808.

    Article  CAS  Google Scholar 

  29. J. Kim, D. Majumdar, H. M. Lee, and K. S. Kim (1999). J. Chem. Phys. 110, 9128.

    Article  CAS  Google Scholar 

  30. K. Liu, J. D. Cruzan, and R. J. Saykally (1996). Science 271, 929.

    Article  CAS  Google Scholar 

  31. S. Supriya, S. Manikumari, P. Raghavaiah, and S. K. Das (2003). New J. Chem. 27, 218.

    Article  CAS  Google Scholar 

  32. C. Foces-Foces, F. H. Cano, M. Martinez-Ripoll, R. Faure, C. Roussel, R. M. Claramunt, C. Lopez, and D. Sanz (1990). Tetrahedron: Asymmetry 1, 65.

    Article  CAS  Google Scholar 

  33. R. J. Doedens, E. Yohannes, and M. I. Khan (2002). Chem. Commun. 1, 62.

    Article  Google Scholar 

  34. J. N. Moorthy, R. Natarajan, and P. Venugopalan (2002). Angew. Chem. Int. Ed. 41, 3417.

    Article  CAS  Google Scholar 

  35. J. L. Atwood, L. J. Barbour, T. J. Ness, C. L. Raston, and P. L. Raston (2001). J. Am. Chem. Soc. 123, 7192.

    Article  CAS  Google Scholar 

  36. W. B. Blanton, S. W. Gordon-Wylie, G. R. Clark, K. D. Jordan, J. T. Wood, U. Geiser, and T. J. Collins (1999). J. Am. Chem. Soc. 121, 3551.

    Article  CAS  Google Scholar 

  37. L. J. Barbour, G. W. Orr, and J. L. Atwood (2000). Chem. Commun. 10, 859.

    Article  Google Scholar 

  38. H. A. Harker, M. R. Viant, F. N. Keutsch, E. A. Michael, R. P. McLaughlin, and R. J. Saykally (2005). J. Phys. Chem. A 109, 6483.

    Article  CAS  Google Scholar 

  39. K. Liu, M. G. Brown, J. D. Cruzan, and R. J. Saykall (1996). Science 271, 62.

    Article  CAS  Google Scholar 

  40. S. Pal, N. B. Sankaran, and A. Samanta (2003). Angew. Chem. Int. Ed. 42, 1741.

    Article  CAS  Google Scholar 

  41. R. Custelcean, C. Afloroaei, M. Vlassa, and M. Polverejan (2000). Angew. Chem. Int. Ed. 39, 3094.

    Article  CAS  Google Scholar 

  42. K. M. Park, R. Kuroda, and T. Iwamoto (1993). Angew. Chem. Int. Ed. Engl. 32, 884.

    Article  Google Scholar 

  43. K. Raghuraman, K. K. Katti, L. J. Barbour, N. Pillarsetty, C. L. Barnes, and K. V. Katti (2003). J. Am. Chem. Soc. 125, 6955.

    Article  CAS  Google Scholar 

  44. C. Janiak and T. G. Scharman (2002). J. Am. Chem. Soc. 124, 14010.

    Article  CAS  Google Scholar 

  45. B. Q. Ma, H. L. Sun, and S. Gao (2004). Angew. Chem. Int. Ed. 43, 1374.

    Article  CAS  Google Scholar 

  46. A. D. Becke (1988). Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  47. L. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, Petersson, et al. Gaussian 09, revision A.01 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  49. I. Rozas (2007). Phys. Chem. Chem. Phys 9, 2782.

    Article  CAS  Google Scholar 

  50. C. Møller and M. S. Plesset (1934). Phys. Rev 46, 618.

    Article  Google Scholar 

  51. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold (2013).

  52. C. J. Cramer Essentials of Computational Chemistry: Theories and Models, 2nd ed (John Wiley & Sons Inc, New York, 2004).

    Google Scholar 

  53. S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.

    Article  CAS  Google Scholar 

  54. F. Chen and E. R. Davidson (2002). Chem. Phys. Lett. 360, 99.

    Article  CAS  Google Scholar 

  55. D. Tzeli, A. Mavridis, and S. S. J. Xantheas (2002). Phys. Chem. A 106, 11327.

    Article  CAS  Google Scholar 

  56. T. J. Van Mourik (2008). Phys. Chem. A 112, 11017.

    Article  Google Scholar 

  57. F. Tournus and J. C. Charlier (2005). Phys. Rev. B 71, 165421.

    Article  Google Scholar 

  58. S. S. Xantheas, C. J. Burnham, and R. J. Harrison (2002). J. Chem. Phys. 116, 1493.

    Article  CAS  Google Scholar 

  59. S. S. Xantheas and E. Apra (2004). J. Chem. Phys. 120, 823.

    Article  CAS  Google Scholar 

  60. R. M. Shields, B. Temelso, K. A. Archer, T. E. Morrell, and G. C. Shields (2010). J. Phys. Chem. A 114, 11725.

    Article  CAS  Google Scholar 

  61. J. Z. Gillies, C. W. Gullies, R. D. Suenram, and F. J. J. Lovas (1991). Mol. Spectrosc. 146, 493.

    Article  CAS  Google Scholar 

  62. G. A. Jeffrey An introduction to hydrogen bonding (Oxford University Press, New york, 1997).

    Google Scholar 

Download references

Acknowledgements

N.G. is grateful to Prof. B. M. Deb for discussions that provided new insights to the observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Goel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Nawani, S. & Goel, N. Ozone–Water Interaction Revisited Through [(O3)m···(H2O)n] Clusters. J Clust Sci 28, 1693–1708 (2017). https://doi.org/10.1007/s10876-017-1177-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1177-1

Keywords

Navigation