Skip to main content
Log in

Design, Structural Characterization and Catalytic Activity of Incomplete Dicubane Clusters of N-Substituted Diethanolamines

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A series of four new clusters with cationic unit [Co43-OH)(Rdea)2(L–L)4]4+ [R = –CH3 (1 and 2) or –CH2CH2CH2CH3 (3 and 4), L–L = 1,10-phenanthroline or 2,2′-bipyridine] is designed and characterized by elemental, spectroscopic (FTIR, ESI MS, UV–visible), thermal, electrochemical, magnetic, SEM, EDX, PXRD and single crystal X-ray crystallographic techniques. Spectral and single crystal X-ray studies reveal the complexes 14 are tetranuclear clusters where the primary aminoalcohol derivative ligand is present in dianionic form i.e., Medea2− or nBudea2−. It is confirmed from the magnetic and bond valence summation data that the four cobalt ions are present in mixed valent states (Co 2+2 –Co 3+2 ), which is further corroborated from the Co–O and Co–N bond lengths in X-ray structure. The bridging two hydroxide ions consolidate the tetranuclear clusters by bonding with three neighboring metal ions and a rare incomplete dicubane core is formed in all the complexes. A supramolecular framework is generated by H-bonding, π–π, CH···π, and H···H interactions. Presence of N-alkyl group and N-heterocyclic chelator facilitates the generation of these non covalent interactions thus stabilizing the framework. Of all the complexes reported here, 1 is found most efficient catalyst for the cobalt-catalyzed aerobic oxidation of neat ethylbenzene and p-xylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. E. G. Mednikov and L. F. Dahl (2008). Small 4, 534.

    Article  CAS  Google Scholar 

  2. G. E. Kostakis, S. P. Perlepes, V. A. Blatov, D. M. Proserpio, and A. K. Powell (2012). Coord. Chem. Rev. 256, 1246.

    Article  CAS  Google Scholar 

  3. G. Schmid Nanoparticles—From Theory to Application, vol. 19 (Wiley-VCH, Weinheim, 2005), p. 7.

    Google Scholar 

  4. G. Aromi and E. K. Brechin (2006). Struct. Bond. 1, 122.

    Google Scholar 

  5. J. J. Zhang, T. L. Sheng, S. Q. Xia, G. Leibeling, F. Meyer, S. M. Hu, R. B. Fu, S. C. Xiang, and X. T. Wu (2004). Inorg. Chem. 43, 5472.

    Article  CAS  Google Scholar 

  6. R. E. P. Winpenny (2001). Adv. Inorg. Chem. 52, 1 (ed. A.G. Sykes).

    Article  CAS  Google Scholar 

  7. R. E. P. Winpenny (2002). J. Chem. Soc. Dalton Trans. 1.

  8. O. V. Nesterova, M. V. Kirillova, M. Fátima, C. G. da Silva, R. Bočacd, and A. J. L. Pombeiro (2014). Cryst. Eng. Comm. 16, 775.

    Article  CAS  Google Scholar 

  9. R. W. Saalfrank, H. Maid, and A. Scheurer (2008). Angew. Chem. Int. Ed. 47, 8794.

    Article  CAS  Google Scholar 

  10. F. H. Allen (2002). Acta Crystallogr. Sect. B Struct. Sci. 58, 380.

    Article  Google Scholar 

  11. T. C. Stamatatos, D. Foguet-Albiol, W. Wernsdorfer, K. A. Abboud, and G. Christou (2011). Chem. Commun. 47, 274.

    Article  CAS  Google Scholar 

  12. S. K. Langley, K. J. Berry, B. Moubaraki, and K. S. Murray (2009). Dalton Trans. 973.

  13. M. Murugesu, F. Wernsdorfer, K. A. Abboud, and G. Christou (2005). Angew. Chem. Int. Ed. 44, 892.

    Article  CAS  Google Scholar 

  14. B. Moubaraki, K. S. Murray, T. A. Hudson, and R. Robson (2008). Eur. J. Inorg. Chem. 29, 4525.

    Article  Google Scholar 

  15. C. Philouze, G. Blondin, J.-J. Girerd, J. Guilhem, C. Pascard, and D. Lexa (1994). J. Am. Chem. Soc. 116, 8557.

    Article  CAS  Google Scholar 

  16. S. Shit, G. Rosair, and S. Mitra (2011). J. Mol. Struct. 79, 991.

    Google Scholar 

  17. S. Wang, K. Folting, W. E. Streib, E. A. Schmitt, J. K. McCusker, D. N. Hendrickson, and G. Christou (1991). Angew. Chem. Int. Ed. 30, 305.

    Article  Google Scholar 

  18. E. S. Lang, R. Stieler, and G. Manzoni de Oliveira (2010). Polyhedron 29, 1760.

    Article  CAS  Google Scholar 

  19. S. Mukhopadhyay, R. J. Staples, and W. H. Armstrong (2002). Chem. Commun. 864.

  20. M. L. Kirk, M. K. Chan, W. H. Armstrong, and E. I. Solomon (1992). J. Am. Chem. Soc. 114, 10432.

    Article  CAS  Google Scholar 

  21. T. C. Stamatatos, S. Dionyssopoulou, G. Efthymiou, P. Kyritsis, C. P. Raptopoulou, A. Terzis, R. Vicente, A. Escuer, and S. P. Perlepes (2005). Inorg. Chem. 44, 3374.

    Article  CAS  Google Scholar 

  22. P. M. Stricklen, E. J. Volcko, and J. G. Verkade (1983). J. Am. Chem. Soc. 105, 2494.

    Article  CAS  Google Scholar 

  23. M. Fujita, J. Yazaki, and K. Ogura (1990). J. Am. Chem. Soc. 112, 5645.

    Article  CAS  Google Scholar 

  24. M. Shatruk, C. Avendano, and K. R. Dunbar (2009). Prog. Inorg. Chem. 56, 155. (ed. K. D. Karlin).

    Article  CAS  Google Scholar 

  25. L. M. Toma, R. Lescouezec, D. Armentano, G. de Munno, and M. Andruh, J. Cano, F. Lloret, and M. Julve (2005). Dalton Trans. 1357.

  26. T. Shiga and H. Oshio (2005). Sci. Technol. Adv. Mater. 6, 565.

    Article  CAS  Google Scholar 

  27. A. Caneschi, D. Gatteschi, and R. Sessoli (1991). J. Am. Chem. Soc. 113, 5873.

    Article  CAS  Google Scholar 

  28. D. Li, R. Clerac, O. Roubeau, E. Harte, C. Mathoniere, R. Lebris, and S. M. Holmes (2008). J. Am. Chem. Soc. 130, 252.

    Article  CAS  Google Scholar 

  29. R. D. Adams and B. Captain (2008). Angew. Chem. Int. Ed. 47, 252.

    Article  CAS  Google Scholar 

  30. S. Mukhopadhyay, S. K. Mandal, S. Bhaduri, and W. H. Armstrong (2004). Chem. Rev. 104, 3981.

    Article  CAS  Google Scholar 

  31. E. Adman, L. C. Sieker, and L. H. Jensen American Crystallographic Association, Winter Meeting, Symposia: Experimental and theoretical studies of the electron density in crystals and molecules (University of New Mexico, Albuquerque, 1972) (Abstract L2).

    Google Scholar 

  32. B. Schmid, H.-J. Chiu, V. Ramakrishnan, J. B. Howard, and D. C. Rees, in A. Messerschmidt, R. Huber, T. Poulos and K. Wieghardt (eds.), Handbook of Metalloproteins (John Wiley & Sons, Ltd., Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 2001), p. 1025.

  33. Z. A. Siddiqi, A. Siddique, M. Shahid, M. Khalid, P. K. Sharma, Anjuli, M. Ahmad, S. Kumar, Y. Lan, and A. K. Powell (2013). Dalton Trans. 42, 9513.

    Article  CAS  Google Scholar 

  34. D. Gatteschi, R. Sessoli, and A. Cornia (2000). Chem. Commun. 725.

  35. A. K. Powell, S. L. Heath, D. Gatteschi, L. Pardi, R. Sessoli, G. Spina, F. DelGiallo, and F. Pieralli (1995). J. Am. Chem. Soc. 117, 2491.

    Article  CAS  Google Scholar 

  36. E. K. Brechin, S. G. Harris, A. Harrison, S. Parsons, A. G. Whittaker, and R. E. P. Winpenny (1997). Chem. Commun. 653.

  37. Z. E. Serna, M. K. Urtiaga, M. G. Barandika, R. Cortes, S. Martin, L. Lezama, M. I. Arriortua, and T. Rojo (2001). Inorg. Chem. 40, 4550.

    Article  CAS  Google Scholar 

  38. S. Saha, S. Pal, C. J. Góomez-García, J. M. Clemente-Juan, K. Harms, and H. P. Nayek (2014). Polyhedron 28, 1.

    Article  CAS  Google Scholar 

  39. E.-C. Yang, W. Wernsdorfer, S. Hill, R. S. Edwards, M. Nakano, S. Maccagnano, L. N. Zakharov, A. L. Rheingold, G. Christou, and D. N. Hendrickson (2003). Polyhedron 22, 1727.

    Article  CAS  Google Scholar 

  40. Z. E. Serna, L. Lezama, M. K. Urtiaga, M. I. Arriortua, M. G. Barandika, R. Cortes, and T. Rojo (2000). Angew. Chem. Int. Ed. 112, 352.

    Article  Google Scholar 

  41. E. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, and G. Christou (2002). J. Appl. Phys. 91, 7382.

    Article  CAS  Google Scholar 

  42. D. Mandal and D. Ray (2007). Inorg. Chem. Comm. 10, 1202.

    Article  CAS  Google Scholar 

  43. W.-X. Zhang, C.-Q. Ma, X.-N. Wang, Z.-G. Yu, Q.-J. Lin, and D.-H. Jiang (1995). Chin. J. Chem. 13, 497.

    Article  CAS  Google Scholar 

  44. K. Dhara, J. J. Ratha, M. Manassero, X.-Y. Wang, S. Gao, and P. Banerjee (2007). J. Inorg. Biochem. 95, 101.

    Google Scholar 

  45. J. M. Clemente-Juan, C. Mackiewicz, M. Verelst, F. Dahan, A. Bousseksou, Y. Sanakis, and J. P. Tuchagues (2002). Inorg Chem. 41, 1478.

    Article  CAS  Google Scholar 

  46. G. S. Papaefstathiou, A. Escuer, C. P. Raptopoulou, A. Terzis, S. P. Perlepes, and R. Vicente (2001). Eur. J. Inorg. Chem. 2001, 1567.

    Article  Google Scholar 

  47. S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger, D. N. Hendrickson, and G. Christou (1998). J. Am. Chem. Soc. 120, 2365.

    Article  CAS  Google Scholar 

  48. T. C. Stamatatos, A. K. Boudalis, K. V. Pringouri, C. P. Raptopoulou, A. Terzis, J. Wolowska, E. J. L. McInnes, and S. P. Perlepes (2007). Eur. J. Inorg. Chem. 2007, 5098.

    Article  Google Scholar 

  49. E. Colacio, M. Ghazi, R. Kivekäs, and J. M. Moreno (2000). Inorg. Chem. 39, 2882.

    Article  CAS  Google Scholar 

  50. I. A. Ansari, F. Sama, M. Raizada, M. Shahid, M. Ahmad, and Z. A. Siddiqi (2016). New J. Chem. 40, 9840.

    Article  CAS  Google Scholar 

  51. T. G. Carrell, S. Cohen, and G. C. Dismukes (2002). J. Mol. Catal. A Chem. 187, 3.

    Article  CAS  Google Scholar 

  52. J. A. Ibers and W. C. Hamilton (eds.) International Tables for X-ray Crystallography, vol. IV (Kynoch Press, Birmingham, 1974), p. 71.

    Google Scholar 

  53. SMART & SAINT Software Reference Manuals, Version 6.45 (Bruker Analytical X-ray Systems, Inc., Madison, 2003).

  54. G. M. Sheldrick SADABS, software for empirical absorption correction (University of Göttingen, Göttingen, 2002).

    Google Scholar 

  55. XPREP, 5.1 ed. (Siemens Industrial Automation Inc., Madison, 1995).

  56. G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 2008).

    Google Scholar 

  57. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, and R. J. Spagna (1999). J. Appl. Crystallogr. 32, 115.

    Article  CAS  Google Scholar 

  58. A. L. Spek (2009). Acta Cryst. D65, 148.

    Google Scholar 

  59. W. Geary (1971). Coord. Chem. Rev. 7, 81.

    Article  CAS  Google Scholar 

  60. K. Nakamoto Infrared, Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, New York, 1986).

    Google Scholar 

  61. R. P. Sharma, A. Saini, P. Venugopalan, V. Ferretti, F. Spizzo, C. Angeli, and C. J. Calzado (2014). New J. Chem. 38, 274.

    Google Scholar 

  62. Z. G. Li, J. W. Xu, H. Q. Jia, and N. H. Hu (2006). Inorg. Chem. Commun. 9, 969.

    Article  CAS  Google Scholar 

  63. N. T. Madhu and P. K. Radhakrishnan (2000). Trans. Met. Chem. 25, 287.

    Article  CAS  Google Scholar 

  64. Z. Boulsourani, V. Tangoulis, C. P. Raptopoulou, V. Psycharis, and C. D. Samara (2011). Dalton Trans. 40, 7946.

    Article  CAS  Google Scholar 

  65. A. B. P. Lever Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984).

    Google Scholar 

  66. J. S. Kwag, M. H. Jeong, A. J. Laugh, and J. C. Kim (2010). Bull. Korean Chem. Soc. 31, 2069.

    Article  CAS  Google Scholar 

  67. Z. A. Siddiqi and V. J. Mathew (1994). Polyhedron 13, 799.

    Article  CAS  Google Scholar 

  68. I. A. Ansari, F. Sama, M. Shahid, Rahisuddin, R. Arif, M. Khalid, and Z. A. Siddiqi (2016). RSC Adv. 6, 11088 (Add JCC).

    Article  CAS  Google Scholar 

  69. C. D. Samara, P. D. Janakoudakis, D. P. Kessissaglou, G. E. Manoyussakis, D. Mentzapfos, and A. Terzis (1992). Dalton Trans. 3259.

  70. B. N. Figgis and J. Lewis in J. Lewis and R. G. Wilkins (eds.), Modern Coordination Chemistry (Interscience Publishers Inc., New York, 1960), p. 400.

    Google Scholar 

  71. R. J. Angelici, Synthesis and Technique in Inorganic Chemistry, 2nd ed. (W.B. Saunders Company, Philadelphia, 1977), p. 198.

  72. S. A. Chavan, D. Srinivas, and P. Ratnasamy (2001). Chem. Commun. 1124.

  73. M. Łukasiewicz, Z. Ciunik, J. Mazurek, J. Sobczak, A. Staroń, S. Wołowiec, and J. J. Ziółkowski (2001). Eur. J. Inorg. Chem. 1575.

Download references

Acknowledgements

The authors are thankful to the Chairman, Department of Chemistry, Aligarh Muslim University, Aligarh, India, for providing necessary facilities. Farasha Sama thanks UGC, New Delhi for Senior Research Fellowship. M. Shahid acknowledges SERB-DST, New Delhi for financial assistance (Ref. No. SR/FT/CS-76/2011) and Z. A. Siddiqi thanks UGC, New Delhi for UGC BSR faculty fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar A. Siddiqi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sama, F., Ansari, I.A., Raizada, M. et al. Design, Structural Characterization and Catalytic Activity of Incomplete Dicubane Clusters of N-Substituted Diethanolamines. J Clust Sci 28, 1355–1377 (2017). https://doi.org/10.1007/s10876-016-1145-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1145-1

Keywords

Navigation