Skip to main content
Log in

Syntheses, Structures and Proton Conductivities of Two Complexes Based on Decorated Keggin-Type Clusters: {[M(dmphen)(DMF)2(H2O)]2[SiW12O40]}·6H2O (M = Cu and Zn; dmphen = 4,7-dimethyl-1,10-phenanthroline)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two proton-conductive complexes based-on decorated Keggin-type clusters, {[Cu(dmphen)(DMF)2(H2O)]2[SiW12O40]}·6H2O (1) and {[Zn(dmphen)(DMF)2(H2O)]2[SiW12O40]}·6H2O (2) (where dmphen is 4,7-dimethyl-1,10-phenanthroline and DMF is N,N-dimethylformamide), were simply synthesized by the reaction of H4SiW12O40·24H2O, CuCl2·6H2O/ZnCl2 and dmphen at room temperature. The products were structurally characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses at 293 K revealed that two complexes both crystallized in the monoclinic space group C2/c and presented two three-dimensional supramolecular networks with one-dimensional hydrophilic channels constructed by decorated Keggin-type clusters and solvent water molecules via the hydrogen-bonding interactions. The results of thermogravimetric analyses suggest that two complexes have good water holding in one-dimensional hydrophilic channels in the temperature range 20–100 °C. Two Complexes exhibit good proton conductivities (over 10−5 S cm−1 for 1 and over 10−4 S cm−1 for 2) at 100 °C in the relative humidity range 35–98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Mansouri-Torshizi, M. Saeidifar, A. Divsalar, and A. A. Saboury (2010). Spectrochim. Acta A 77, 312.

    Article  Google Scholar 

  2. G. Faraglia, S. Sitran, and D. Montagner (2005). Inorg. Chim. Acta 258, 971.

    Article  Google Scholar 

  3. C. A. Johns, G. M. Golzar-Hossain, K. M. Abdul-Malik, S. Zahir-Haider, and U. K. Rowzatur-Romman (2001). Polyhedron 20, 721.

    Article  CAS  Google Scholar 

  4. M. J. Plater, M. R. Foreman, M. S. Skakle, and R. A. Howie (2002). Inorg. Chim. Acta 332, 135.

    Article  CAS  Google Scholar 

  5. A. M. Thumas, A. D. Naik, M. Nethaji, and A. B. Chakravarty (2004). Inorg. Chim. Acta 357, 2315.

    Article  Google Scholar 

  6. R. E. Shepherd, Y. Chen, R. A. Kortes, and M. S. Ward (2000). Inorg. Chim. Acta 303, 30.

    Article  CAS  Google Scholar 

  7. Y. Wang and N. Okabe (2005). Inorg. Chim. Acta 358, 3407.

    Article  CAS  Google Scholar 

  8. V. Amani, N. Safari, B. Notash, and H. R. Khavasi (2009). J. Coord. Chem. 62, 1939.

    Article  CAS  Google Scholar 

  9. R. D. Willett, G. Pon, and C. Nagy (2001). Inorg. Chem. 40, 4342.

    Article  CAS  Google Scholar 

  10. Q. X. Han, C. He, M. Zhao, B. Qi, J. Y. Niu, and C. Y. Duan (2013). J. Am. Chem. Soc. 135, 10186.

    Article  CAS  Google Scholar 

  11. M. L. Wei, X. X. Wang, and X. Y. Duan (2013). Chem. Eur. J. 19, 1607.

    Article  CAS  Google Scholar 

  12. C. M. Roch, E. Ayrault, L. Lisnard, J. Marrot, F. X. Liu, and F. Secheresse (2006). J. Clust. Sci. 17, 283.

    Article  Google Scholar 

  13. Y. W. Liu, S. M. Liu, X. Y. Lai, J. Miao, D. F. He, N. Li, F. Luo, Z. Shi, and S. X. Liu (2015). Adv. Funct. Mater. 25, 4480.

    Article  CAS  Google Scholar 

  14. E. L. Zhou, C. Qin, P. Huang, X. L. Wang, W. C. Chen, K. Z. Shao, and Z. M. Su (2015). Chem. Eur. J. 21, 11894.

    Article  CAS  Google Scholar 

  15. D. Y. Du, J. S. Qin, S. L. Li, Z. M. Su, and Y. Q. Lan (2014). Chem. Soc. Rev. 43, 4615.

    Article  CAS  Google Scholar 

  16. E. L. Zhou, C. Qin, X. L. Wang, K. Z. Shao, and Z. M. Su (2015). Chem. Eur. J. 21, 13058.

    Article  CAS  Google Scholar 

  17. T. Dong, J. B. Du, M. Cao, and C. W. Hu (2010). J. Clust. Sci. 21, 155.

    Article  CAS  Google Scholar 

  18. M. L. Wei, H. H. Li, and X. X. Wang (2012). J. Clust. Sci. 23, 325.

    Article  CAS  Google Scholar 

  19. C. Y. Duan, M. L. Wei, D. Guo, C. He, and Q. J. Meng (2010). J. Am. Chem. Soc. 132, 3321.

    Article  CAS  Google Scholar 

  20. X. Wang, C. Y. Kong, J. J. Lai, and M. L. Wei (2016). J. Clust. Sci. 27, 645.

    Article  CAS  Google Scholar 

  21. X. Wang, C. Y. Duan, C. Y. Kong, and M. L. Wei (2016). J. Coord. Chem. 69, 779.

    Article  CAS  Google Scholar 

  22. C. R. De Silva, J. R. Maeyer, R. Wang, G. S. Nichol, and Z. Zheng (2007). Inorg. Chim. Acta 360, 3534.

    Article  Google Scholar 

  23. I. Warad, M. Al-Ali, B. Hammouti, T. B. Hadda, R. Shareiah, and M. Rzaigui (2013). Res. Chem. Intermed. 39, 2451.

    Article  CAS  Google Scholar 

  24. V. Singh, D. Singh, R. Kumar, S. Lata, and M. Sharma (2010). Asian J. Chem. 22, 5482.

    CAS  Google Scholar 

  25. SMART and SAINT Area Detector Control and Integration Software (Siemens Analytical X-ray Systems Inc, Madison, 1996).

    Google Scholar 

  26. G. M. Sheldrick SHELXTL Version 5.1, Software Reference Manual (Bruker AXS Inc, Madison, 1997).

    Google Scholar 

  27. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B Struct. Sci. 41, 244.

    Article  Google Scholar 

  28. M. L. Wei, J. J. Sun, and X. Y. Duan (2014). Eur. J. Inorg. Chem. 2014, 345.

    Article  CAS  Google Scholar 

  29. S. C. Nyburg and C. H. Faerman (1985). Acta Crystallogr. Sect. B Struct. Sci. 41, 274.

    Article  Google Scholar 

  30. H. Strasdeit, I. Büsching, S. Behrends, W. Saak, and W. Barklage (2001). Chem. Eur. J. 7, 1133.

    Article  CAS  Google Scholar 

  31. O. Nakamura, T. Kodama, I. Ogino, and Y. Miyake (1979). Chem. Lett. 1, 17.

    Article  Google Scholar 

  32. K. D. Kreuer, A. Rabenau, and W. Weppner (1982). Angew. Chem. Int. Ed. 21, 208.

    Article  Google Scholar 

  33. R. D. Hancock and A. E. Martell (1989). Chem. Rev. 89, 1875.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21171050 and 21501047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Lin Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, CY., Duan, XY., Lai, JJ. et al. Syntheses, Structures and Proton Conductivities of Two Complexes Based on Decorated Keggin-Type Clusters: {[M(dmphen)(DMF)2(H2O)]2[SiW12O40]}·6H2O (M = Cu and Zn; dmphen = 4,7-dimethyl-1,10-phenanthroline). J Clust Sci 28, 1407–1420 (2017). https://doi.org/10.1007/s10876-016-1144-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1144-2

Keywords

Navigation