Skip to main content
Log in

Flower-Like Copper Sulfide Nanocrystals are Highly Effective Against Chloroquine-Resistant Plasmodium falciparum and the Malaria Vector Anopheles stephensi

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Anopheles stephensi is a mosquito of outstanding public health relevance, acting as a major vector of malaria in a number of tropical and subtropical areas worldwide. In recent years, important efforts have been conducted to propose nano-formulated larvicides as valuable alternatives to synthetic insecticides currently marketed. In the present study, the toxicity of flower-like copper sulfide (CuS) nanocrystals has been investigated on the malaria vector A. stephensi and Plasmodium parasites. Characterization of synthesized CuS nanocrystals was carried out using FTIR spectroscopy, XRD analysis, FESEM, HR-TEM and EDS. In mosquitocidal assays, LC50 values ranged from 23.347 ppm (first-instar larvae) to 48.789 ppm (pupae). In vitro anti-plasmodial activity of CuS nanoflowers was evaluated against chloroquine-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 were 83.44 μg/mL (CQ-s) and 87.15 μg/mL (CQ-r). However, in vivo antiplasmodial experiments conducted on Plasmodium berghei infecting albino mice showed limited activity of CuS nanocrystals, if compared to CQ. Overall, our findings showed that chemically synthesized flower-like CuS nanocrystals are promising to improve the effectiveness of mosquito control programs, as well as to develop novel antiplasmodial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Benelli and H. Mehlhorn (2016). Parasitol. Res. doi:10.1007/s00436-016-4971-z.

    Google Scholar 

  2. G. Benelli, A. Lo Iacono, A. Canale, and H. Mehlhorn (2016). Parasitol. Res. doi:10.1007/s00436-016-5037-y.

    Google Scholar 

  3. E. J. Muturi, P. Burgess, and R. J. Novak (2008). Am. J. Trop. Med. Hyg. 78, 536.

    Google Scholar 

  4. H. Mehlhorn Encyclopedia of Parasitology, vol. 3rd edn (Springer, New York, 2008).

    Book  Google Scholar 

  5. WHO (2016). Zika virus. Fact sheet N1. Updated Jan 2016

  6. J. G. Breman, A. S. Martin, and A. Mills (2004). Am. J. Trop. Med. Hyg. 71, 1.

    Google Scholar 

  7. R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay (2005). Nature 434, 214.

    Article  CAS  Google Scholar 

  8. V. P. Sharma (2003). Curr. Sci. 84, 513.

    Google Scholar 

  9. C. Kuppusamy and K. Murugan (2009). Int. J. Integr. Biol. 5, 75.

    CAS  Google Scholar 

  10. A. T. Aziz, J. A. Mahyoub, H. Rehman, S. Saggu, K. Murugan, C. Panneerselvam, M. Nicoletti, H. Wei, A. Canale, and G. Benelli (2016). Asian. Pac. J. Trop. Biomed. doi:10.1016/j.apjtb.2015.12.017.

    Google Scholar 

  11. J. Hemingway and H. Ranson (2000). Annu. Rev. Entomol. 45, 371.

    Article  CAS  Google Scholar 

  12. M. N. Naqqash, A. Gokce, A. Bakhsh, and M. Salim (2016). Parasitol. Res. 115, 1363.

    Article  Google Scholar 

  13. K. Murugan, C. Panneerselvam, C. M. Samidoss, P. Madhiyazhagan, U. Suresh, M. Roni, B. Chandramohan, J. Subramaniam, D. Dinesh, R. Rajaganesh, M. Paulpandi, H. Wei, A. T. Aziz, M. Saleh Alsalhi, S. Devanesan, M. Nicoletti, R. Pavela, A. Canale, and G. Benelli (2016). Res. Vet. Sci. 106, 14.

    Article  Google Scholar 

  14. K. Murugan, D. Dinesh, K. Kavithaa, M. Paulpandi, T. Ponraj, M. Saleh Alsalhi, S. Devanesan, J. Subramaniam, R. Rajaganesh, H. Wei, K. Suresh, M. Nicoletti, and G. Benelli (2016). Parasitol. Res. 115, 1085.

    Article  Google Scholar 

  15. S. Devasenan, N. Hajara Beevi, and S. S. Jayanthi (2016). Int. J. ChemTech. Res. 9, 725.

    Google Scholar 

  16. G. Benelli (2016). Parasitol. Res. 115, 23.

    Article  Google Scholar 

  17. G. Benelli (2016). Asian. Pac. J. Trop Biomed. doi:10.1016/j.apjtb.2015.10.015.

    Google Scholar 

  18. R. Narayanan and M. A. El-Sayed (2003). J. Am. Chem. Soc. 125, 8340.

    Article  CAS  Google Scholar 

  19. G. Borkow (2010). Wound. Repair. Regen. 18, 266.

    Article  Google Scholar 

  20. G. Borkow, R. C. Zatcoff, and J. Gabbay (2009). Med. Hypotheses. 73, 883.

    Article  CAS  Google Scholar 

  21. L. C. Carnes and K. J. Klabunde (2003). J. Mol. Catal. A. Chem 194, 227.

    Article  CAS  Google Scholar 

  22. Z. Guo, X. Liang, T. Pereira, R. Scaffaro, and H. T. Hahn (2007). Sci. Tech. 67, 2036.

    CAS  Google Scholar 

  23. Y. Li, J. Liang, Z. Tao, and J. Chen (2008). Mater. Res. Bull. 43, 2380.

    Article  CAS  Google Scholar 

  24. C. Hyungsoo and P. Sung-Ho (2004). J. Am. Chem. Soc. 126, 6248.

    Article  Google Scholar 

  25. L. Huang, H. Jiang, J. Zhang, Z. Zhang, and P. Zhang (2006). Electrochem. Commun. 8, 262.

    Article  CAS  Google Scholar 

  26. N. Aruldhas, C. P. Raj, and A. Gedanken (1998). Chem. Mater. 10, 1446.

    Article  Google Scholar 

  27. H. Hashemipour, M. E. Z. Rahimi, R. Pourakbari, and P. Rahimi (2011). J. Phys. Sci. 6, 4331.

    CAS  Google Scholar 

  28. N. V. Surmawar, S. R. Thakare, and N. T. Khaty (2011). Int. J. Green. Nanotechnol. 3, 302.

    Article  CAS  Google Scholar 

  29. P. K. Khanna, S. Gaikwad, P. V. Adhyapak, N. Singh, and R. Marimuthu (2007). Mater. Lett. 61, 4711.

    Article  CAS  Google Scholar 

  30. D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519.

    Article  Google Scholar 

  31. W. Trager and J. Jensen (1976). Science 193, 673.

    Article  CAS  Google Scholar 

  32. M. Smilkstein, N. Sriwilaijaroen, J. X. Kelly, P. Wilairat, and M. Riscoe (2004). Antimicrob. Agents Chemother. 48, 1803.

    Article  CAS  Google Scholar 

  33. A. Bagavan, A. A. Rahuman, N. K. Kaushik, and D. Sahal (2011). Parasitol. Res. 108, 15.

    Article  Google Scholar 

  34. A. Ishih, T. Suzuki, M. Watanabe, T. Miyase, and M. Terada (2003). Phytother. Res. 17, 1234.

    Article  CAS  Google Scholar 

  35. W. Peters, J. H. Portus, and B. L. Robinson (1975). Ann. Tropic. Med. Parasitol 69, 155.

    Article  CAS  Google Scholar 

  36. M. C. Gessler, D. E. Msuya, and M. H. H. Nkunya (1995). J. Ethnopharmacol. 48, 131.

    Article  CAS  Google Scholar 

  37. D. J. Finney Probit Analysis, 3rd ed (Canbridge University Press, Cambridge, 1971).

    Google Scholar 

  38. J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan, and M. Ashokkumar (2015). RSC. Adv. 5, 52718.

    Article  CAS  Google Scholar 

  39. J. Theerthagiri, B. Shankar, M. Dalavi, R. Manivel, and R. N. Panda (2013). Mater. Res. Bull. 48, 4444.

    Article  CAS  Google Scholar 

  40. M. Rajesh (2016). Int. Adv. Res. J. Sci. Eng Technol. 3, 37.

    Google Scholar 

  41. O. Mahapatraa, M. Bhagatb, C. Gopalakrishnana, and K. D. Arunachalamb (2008). J Exp Nanosci 3, (3), 185–193.

    Article  Google Scholar 

  42. D. V. Judith, D. Carla, P. Claudio, B. Abraham, P. Carlos, and G. Apolinaria (2012). Int. J. Nanomed. 7, 3597–3612.

    Google Scholar 

  43. R. Ridzuan, R. K. Maksudur, K. C. Najmul, D. H. B. Mohammad, M. H. Rohaya, A. A. Astimar, I. Zawawi, and H. Z. Nahrul (2013). Adv. Nanopart. 2, 358.

    Article  Google Scholar 

  44. U. Suresh, K. Murugan, G. Benelli, M. Nicoletti, D. R. Barnard, C. Panneerselvam, P. Mahesh Kumar, J. Subramaniam, D. Dinesh, and B. Chandramohan (2015). Parasitol. Res. doi:10.1007/s00436015-4339-9.

    Google Scholar 

  45. G. Benelli (2016). Enzyme. Microb. Technol. doi:10.1016/j.enzmictec.2016.08.022.

    Google Scholar 

  46. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A. A. Rahuman, S. Santhoshkumar, A. Vishnu Kirthi, C. Jayaseelan, and S. Marimuthu (2011). Parasitol. Res. 109, 1403.

    Article  Google Scholar 

  47. A. V. Kirthi, A. A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, and K. Velayutham (2011). Parasitol. Res. doi:10.1007/s00436-011-2277-8.

    Google Scholar 

  48. K. Murugan, C. M. Samidoss, C. Panneerselvam, A. Higuchi, M. Roni, U. Suresh, B. Chandramohan, J. Subramaniam, P. Madhiyazhagan, D. Dinesh, R. Rajaganesh, A. A. Alarfaj, M. Nicoletti, S. Kumar, H. Wei, A. Canale, H. Mehlhorn, and G. Benelli (2015). Parasitol. Res. 114, 4087.

    Article  Google Scholar 

  49. K. Murugan, C. Panneerselvam, J. Subramaniam, P. Madhiyazhagan, J. S. Hwang, L. Wang, D. Dinesh, U. Suresh, M. Roni, A. Higuchi, M. Nicoletti, and G. Benelli (2016). Environ. Sci. Pollut. Res. doi:10.1007/s11356-016-6832-9.

    Google Scholar 

  50. S. Ravikumar, G. Ramanathan, S. J. Inbaneson, and A. Ramu (2011). Parasitol. Res. 108, 107.

    Article  Google Scholar 

  51. L. P. Ouattara, S. Sanon, V. Mahiou-Leddet, A. Gansané, B. Baghdikian, A. Traoré, I. Nébié, A. S. Traoré, N. Azas, E. Ollivier, and S. B. Sirima (2014). Parasitol. Res. 113, 405.

    Article  Google Scholar 

  52. A. Jaganathan, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, D. Dinesh, C. Vadivalagan, A. T. Aziz, B. Chandramohan, U. Suresh, R. Rajaganesh, J. Subramaniam, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, and G. Benelli (2016). Parasitol. Int. 65, 276–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

Conflicts of interest

The Authors declare no conflicts of interest.

Ethical approval

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theerthagiri, J., Madhavan, J., Murugan, K. et al. Flower-Like Copper Sulfide Nanocrystals are Highly Effective Against Chloroquine-Resistant Plasmodium falciparum and the Malaria Vector Anopheles stephensi . J Clust Sci 28, 581–594 (2017). https://doi.org/10.1007/s10876-016-1128-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1128-2

Keywords

Navigation