Skip to main content
Log in

Formation of Silicon-Containing Polyoxoniobates from Hexaniobate Under High Temperature Conditions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hydrothermal reaction of K7H[Nb6O19]·13H2O with Na2SiO3·9H2O (220 °C, 24 h) produces a lacunary siliconiobate [Si4Nb16O56]16−, which was isolated as mixed salt NaK8H6[Na@Si4Nb16O56]·26H2O (1). Changing the silicon source to Ph2Si(OH)2 under the same conditions slightly improves the yield of [Si4Nb16O56]16−, which was isolated as K14H[K@Si4Nb16O56]·26H2O (2). Extending the reaction time leads to rearrangement of [Si4Nb16O56]16− into Keggin-type silicododecaniobate [SiNb12O40]16−, which was isolated and characterized as K8H2(Nb2O2)[SiNb12O40]·20H2O (3). The complexes were characterized by X-ray single crystal analysis, elemental analysis, thermogravimetry, 29Si NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Nyman, F. Bonhomme, T. M. Alam, M. A. Rodriguez, B. R. Cherry, J. L. Krumhansl, T. M. Nenoff, and A. M. Sattler (2002). Science 297, 996.

    Article  CAS  Google Scholar 

  2. M. Nyman (2011). Dalton Trans. 40, 8049.

    Article  CAS  Google Scholar 

  3. H.-L. Wu, Z.-M. Zhang, Y.-G. Li, X.-L. Wang, and E.-B. Wang (2015). CrystEngComm 17, 6261.

    Article  CAS  Google Scholar 

  4. P. Huang, C. Qin, Z.-M. Su, Y. Xing, X.-L. Wang, K.-Z. Shao, Y.-Q. Lan, and E.-B. Wang (2012). J. Am. Chem. Soc. 134, 14004.

    Article  CAS  Google Scholar 

  5. J.-H. Son, D.-H. Park, D. A. Keszler, and W. H. Casey (2015). Chem. Eur. J. 21, 6727.

    Article  CAS  Google Scholar 

  6. R. H. Mansergh, L. B. Fullmer, D.-H. Park, M. Nyman, and D. A. Keszler (2016). Chem. Mater. 28, 1553.

    Article  CAS  Google Scholar 

  7. P. A. Abramov, M. N. Sokolov, S. Floquet, M. Haouas, F. Taulelle, E. Cadot, E. V. Peresypkina, A. V. Virovets, C. Vicent, N. B. Kompankov, A. A. Zhdanov, O. V. Shuvaeva, and V. P. Fedin (2014). Inorg. Chem. 53, 12791.

    Article  CAS  Google Scholar 

  8. P. A. Abramov, C. Vicent, N. B. Kompankov, J. A. Laricheva, and M. N. Sokolov (2016). RSC Adv. 6, 20240.

    Article  CAS  Google Scholar 

  9. C. M. Flynn and G. D. Stucky (1969). Inorg. Chem. 8, 178.

    Article  CAS  Google Scholar 

  10. C. B. Hübschle, G. M. Sheldrick, and B. Dittrich (2011). J. Appl. Cryst. 44, 1281.

    Article  Google Scholar 

  11. APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11), Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, 2004.

  12. M. Nyman, F. Bonhomme, T. M. Alam, J. B. Parise, and G. M. B. Vaughan (2004). Angew. Chem. Int. Ed. 43, 2787.

    Article  CAS  Google Scholar 

  13. F. Bonhomme, J. P. Larentzos, T. M. Alam, E. J. Maginn, and M. Nyman (2005). Inorg. Chem. 44, 1774.

    Article  CAS  Google Scholar 

  14. M. Nyman, E. J. Maginn, J. P. Larentzos, F. Bonhomme, J. B. Parise, M. E. Welk, I. Bull, and H. Park (2007). Inorg. Chem. 46, 2067.

    Article  CAS  Google Scholar 

  15. T. M. Anderson, S. G. Thoma, F. Bonhomme, M. A. Rodriguez, H. Park, J. B. Parise, T. M. Alam, J. P. Larentzos, and M. Nyman (2007). Cryst. Growth Des. 7, 719.

    Article  CAS  Google Scholar 

  16. M. Nyman, A. J. Celestian, J. B. Parise, G. P. Holland, and T. M. Alam (2006). Inorg. Chem. 45, 1043.

    Article  CAS  Google Scholar 

  17. R. Kato, A. Kobayashi, and Yu Sasaki (1980). J. Am. Chem. Soc. 102, 6571.

    Article  CAS  Google Scholar 

  18. Y. Hou, L. N. Zakharov, and M. Nyman (2013). J. Am. Chem. Soc. 135, 16651.

    Article  CAS  Google Scholar 

  19. Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S.-T. Zheng, C. J. Bardeen, X. Bu, and P. Feng (2011). J. Am. Chem. Soc. 133, 6934.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Russian Science Foundation (Grant No. 14-13-00645). The authors thank Dr. Irina V. Kalinina for experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Abramov.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10876_2016_1121_MOESM1_ESM.docx

Supplementary material 1 (DOCX 3253 kb) Supporting information available 29Si NMR and FTIR. Crystallographic data in CIF format have been deposited at Cambridge Crystallographic Data Center on quoting the depository number CSD 431691 (1), 431692 (2), 431693 (3). Copies of this information may be obtained free of charge from http://www.ccdc.cam.ac.uk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, P.A., Davletgildeeva, A.T. & Sokolov, M.N. Formation of Silicon-Containing Polyoxoniobates from Hexaniobate Under High Temperature Conditions. J Clust Sci 28, 735–744 (2017). https://doi.org/10.1007/s10876-016-1121-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1121-9

Keywords

Navigation